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Abstract

The isolated effects of collateral reuse on financial stability are ambiguous and

understudied. While greater collateral reuse can guarantee more payments with fewer

assets, it can also increase the exposure to potential drops in collateral price. To

analyze these tradeoffs, we develop a financial network model with endogenous asset

pricing, multiple equilibria, and equilibrium selection. We find that more collateral

reuse decreases the likelihood of the worst equilibrium (crisis), with varying effects

depending on the network structure. Therefore, collateral reuse can unambiguously

improve financial stability for a fixed degree of risk-taking behavior. However, with

endogenous risk-taking, we show that a higher degree of collateral reuse can worsen

financial stability through greater risk-taking. As a result, while crises may occur less

frequently, their severity would increase, leading to a lower social surplus during crises.
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1. Introduction

Securities financing transactions (SFTs)—which include repurchase agreement (repo),

reverse repo, securities lending/borrowing, and margin lending transactions— use securities

to borrow cash or vice versa, and are crucial for the functioning of the global financial

market. Distress in the SFT markets played an important role in the culmination of the

Global Financial Crisis (GFC) in 2008 (Allen et al., 2009; Jorion and Zhang, 2009; Gorton

and Metrick, 2012). The outstanding amounts of SFTs are substantial: over €15 trillion in

the EU,1 and over $6 trillion in the U.S. (just for repos and reverse repos) as of March 2025.2

Most SFTs are collateralized, implying that one side of the trade posts assets to guarantee

the payments made to the other side (counterparty) in case of a default. Collateral posted

in this way can often be reused by receiving counterparties when they themselves borrow

from other counterparties. Such reuse or rehypothecation of collateral is prevalent in the

markets for SFTs (Fuhrer, Guggenheim, and Schumacher, 2016; Singh, 2017; Infante, Press,

and Saravay, 2020).3 Policy makers have discussed potential systemic risks stemming from

collateral reuse.4 Many academic papers have explored the effects of collateral reuse on

leverage, liquidity, safe asset demand, and risks of lender default and collateral runs (Infante,

2019; Gottardi, Maurin, and Monnet, 2019; Park and Kahn, 2019; Infante and Vardoulakis,

2021; Chang, 2021; Maurin, 2022; Brumm, Grill, Kubler, and Schmedders, 2023; Infante and

Saravay, 2024).

However, the isolated effects of collateral reuse on financial stability are unclear. When

holding counterparty liabilities fixed, greater collateral reuse can guarantee and protect more

debt obligations with fewer assets, potentially mitigating defaults. On the contrary, collateral

1https://www.icmagroup.org/market-practice-and-regulatory-policy/

repo-and-collateral-markets/market-data/sftr-public-data/
2https://www.sifma.org/resources/research/statistics/us-repo-statistics/
3Infante et al. (2020) find that the collateral multiplier (degree of collateral reuse), measuring SFTs as a

multiple of the total amount of collateral owned, for U.S. Treasury securities is around 10 for all contracts
and around 5 for repos.

4See, for example, Aitken and Singh (2010) and Financial Stability Board (2017).
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reuse may harm financial stability as more debt obligations depend on the same collateral,

whose value can potentially drop. Furthermore, more collateral reuse may incentivize agents

to take on greater risk. Hence, an in-depth analysis is required to understand the financial

stability implications of collateral reuse.

The main contribution of this paper is to develop a new model to isolate the effect of

collateral reuse on financial stability. We find that an increase in collateral reuse increases

financial stability by reducing the likelihood of a crisis (bad equilibrium). However, we also

show that agents take on more risk with an increase in collateral reuse since a crisis becomes

less likely. Therefore, an increase in collateral reuse leads to a decrease in the frequency

of crises but an increase in the severity of crises, leading to a lower social surplus. Thus,

this paper primarily contributes to the literature on financial networks and systemic risk

(Eisenberg and Noe, 2001; Elliott et al., 2014; Acemoglu et al., 2015; Bernard et al., 2022;

Altinoglu and Stiglitz, 2023; Donaldson et al., 2022) and the literature on collateral reuse

(Park and Kahn, 2019; Gottardi, Maurin, and Monnet, 2019; Infante and Vardoulakis, 2021;

Infante, Press, and Strauss, 2018; Maurin, 2022) by directly linking them together.

Our model is a network model in which agents are connected through collateralized

counterparty exposures while allowing for collateral reuse.5 It is based on the financial net-

works literature in which links represent payment relationships, stemming from Eisenberg

and Noe (2001). In particular, it directly extends Chang and Chuan (2024), which incorpo-

rates (re)use of collateral and endogenous collateral price. Therefore, our model allows for

contagion through both counterparty exposures and asset prices.

The model of Chang and Chuan (2024) is based on an economy of n agents and three

5Typical SFTs take the form of a one-to-one relationship between a borrower and a lender. If the value
of the collateral is greater than the face value of the debt (liability), then the payment is always made
in full. However, if the value of the collateral is less than the face value of the debt, then the payment
depends on both the price of the collateral and the cash balance of the borrowing counterparty. Therefore,
a collateralized debt network has two transmission channels of shocks: the collateral price channel and the
counterparty channel. The interaction of network structure and collateral prices can dramatically alter a
network’s systemic risk and, thus, welfare (Chang and Chuan, 2024). For example, the collapse in prices of
subprime mortgages during the GFC was exacerbated by the bankruptcy of Lehman Brothers, which spread
the initial losses to Lehman’s counterparties and further decreased asset prices (Singh, 2017).
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periods t = 0, 1, 2. Agents are endowed with an asset that can be traded and used as

collateral. The price of the asset p is endogenously determined in a competitive Walrasian

market in each period. The payoff of the collateralizable asset s is common knowledge and

realized in the final period t = 2. In the first period t = 0, agents borrow from each other

using bilateral one-period secured debt contracts.6 The collection of these bilateral debt

contracts is the collateralized debt network. We take the network as exogenously given, as

short-term collateralized contracts tend to be relationship-based (Han, Nikolaou, and Tase,

2022; Chang, Klee, and Yankov, 2025). At t = 0, agents also invest in a long-term project

that generates a non-pledgeable return at the final period t = 2. Liquidating the long-

term project is costly and thus socially inefficient. However, agents can receive a negative

liquidity shock at t = 1 and may have to liquidate their long-term projects to pay their

debt. If an agent’s net wealth is still negative after liquidations, the agent defaults on her

inter-agent payments, which can trigger additional liquidations and defaults through the

network. Liquidity shocks and defaults can also decrease the collateral asset price, as agents

may fire-sell their assets due to liquidity shortages, further exacerbating default losses, as

the collateral value declines. In such cases, the equilibrium asset price is determined by

cash-in-the-market pricing, as the return on purchasing the collateral asset is greater than

the cash return.

As Chang and Chuan (2024) showed, if collateral is sufficient, any network structure is

insulated from contagion.7 Moreover, for a fixed debt network and endowments, a higher

degree of collateral reuse (or higher value of the collateral multiplier defined by Aitken and

Singh (2010) and Singh (2017)) implies the same liability amount can be covered by more

collateral. Therefore, as long as the collateral price remains at its fundamental value s,

increased collateral reuse guarantees financial stability.

However, there are multiple equilibria in the model. In line with the literature (Rogers

6The debt contract encompasses any type of SFTs and even derivatives.
7This result is in line with real-world markets. For example, repo collateral is exempt from the automatic

stay of bankruptcy provisions and prevents further spillovers.
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and Veraart, 2013; Elliott, Golub, and Jackson, 2014; Bernard, Capponi, and Stiglitz, 2022;

Capponi, Corell, and Stiglitz, 2022), the analysis of Chang and Chuan (2024) focuses on

the maximum (Pareto-dominant) equilibrium. Nonetheless, multiplicity of equilibria itself

can generate interesting venue of research (Dybvig, 2023). As Jackson and Pernoud (2024)

show, multiplicity and self-fulfilling defaults can be important in understanding fragility of

a financial network.8 Hence, we analyze the multiplicity of equilibria in the model of Chang

and Chuan (2024).

Our first main result is that there can be at most three equilibria in our model, depending

on the network structure, when collateral (re)use is large enough. In the best (Pareto-

dominant) equilibrium, the collateral asset is maximally priced at its fundamental value

p = s, and can prevent contagion, resulting in ample liquidity for the agents to buy the

asset at its fundamental value. In the worst equilibrium, the collateral asset is priced at zero

p = 0, maximizing counterparty exposures between agents, when the network is sufficiently

connected. This results in full contagion, i.e., all agents default. Because all agents are

defaulting, there is no one to buy the asset at a positive price. Finally, in the intermediate

equilibrium, the collateral asset is priced at a market-clearing price p∗ that equalizes the

available cash in the network and the total supply of fire sales.

The existence of three different equilibria implies that the equilibrium can suffer signifi-

cant swings in social surplus based on changes in coordination of equilibrium. A huge amount

of social inefficiency can be realized if agents in the network coordinate into the worst equi-

librium in which all agents default and inefficiently liquidate their long-term projects. This

result is directly related to the ongoing policy concerns on the resilience of the U.S. Treasury

market, the market for the safest and most commonly used collateral assets (Liang, 2025).

Our second main result is that the intermediate equilibrium price p∗ is decreasing in the

degree of collateral reuse. The intuition is simple: more collateral reuse (c) leads to smaller

8For example, Fleming and Keane (2021) and Božić and Zrnc (2023) show that centrally netting out
liabilities can greatly reduce the number and severity of defaults, implying that self-fulfilling defaults are
real and important (Jackson and Pernoud, 2024).
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counterparty exposure for a given price, resulting in an increase in the net wealth of agents.

Then, the collateral price p must fall to clear the market, which equalizes the aggregate

net wealth with the total value of assets on sale. In other words, the equilibrium price p

decreases to make the total value of the collateral, (cp), constant. Although the intermediate

equilibrium price p∗ may differ across different networks, the price is monotonically decreasing

in the degree of collateral reuse c.

We then extend our model to incorporate equilibrium selection. For equilibrium selection,

we consider global games, as in Carlsson and Van Damme (1993) and Morris and Shin (1998),

and best response dynamics, as in Gilboa and Matsui (1991) and Matsui (1992). Our main

results hold using both approaches.

Our third main result is that there is an inverse relationship between the intermediate

equilibrium price (p∗) and the likelihood of the best equilibrium. This is because the inter-

mediate equilibrium is unstable compared to the best equilibrium (with p = s) or the worst

equilibrium (with p = 0). If the asset price is perturbed slightly above the intermediate

equilibrium price p > p∗, then the equilibrium will converge to the best equilibrium. This

is because an increase in p increases agents’ aggregate net wealth, which further increases p

until it reaches its upper bound p = s. Conversely, if the asset price is perturbed slightly

below the intermediate equilibrium price p < p∗, then the equilibrium will converge to the

worst equilibrium. Therefore, having a lower intermediate equilibrium price p∗ implies that

there is a greater range of (p∗, s] in which any realization/perturbation of noisy asset sales

would lead to the best equilibrium with p = s.

Combining our first three main results, we find that increased collateral reuse improves

financial stability for a fixed debt network and endowments. This counterintuitive result

alleviates the first-order concern of policymakers that increased collateral reuse increases the

financial system’s exposure to self-fulfilling price declines and defaults. Even if there exists

the possibility of a self-fulfilling crisis (the worst equilibrium), an increase in the degree of

collateral reuse actually makes the financial system more stable, not less.
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Finally, we further extend our model to incorporate agents’ risk-taking decisions. In

particular, we endogenize the agents’ portfolio choice between cash and long-term investment

projects at t = 0. Agents can form beliefs about the expected outcome at t = 1 and

maximize their expected payoff at the final period t = 2. Holding more cash can reduce costly

liquidation following an agent’s default, which occurs during a crisis (the worst equilibrium)

or a realization of a large liquidity shock. Alternatively, investing in the long-term project

may yield higher returns at the cost of taking on more risk and potentially needing to

liquidate more at t = 1.

For our fourth and last main results, we find that an increase in collateral reuse leads to

more risk-taking behavior, as agents invest more cash in long-term projects. This is because

the likelihood of the worst equilibrium decreases as collateral reuse increases. Thus, agents

have less incentives to hold cash and instead prefer to invest it in the long-term investment

projects, which have a higher payoff if held to maturity. As a result, there will be more

socially inefficient liquidations of the long-term projects when a crisis (the worst equilibrium)

occurs.9 Therefore, we find that greater degree of collateral reuse can harm financial stability

when agents’ portfolio choices are endogenously determined. In particular, it will decrease

the resiliency of the financial system as social welfare in the worst equilibrium falls due to

more costly liquidations.

Our results have three important policy implications. First, the degree of collateral reuse

alone is not a concern for financial stability. Indeed, collateral reuse can alter other relevant

factors that may ultimately influence financial stability, such as market liquidity and rate

spreads due to safe asset scarcity.10 However, we find that the direct relationship between

collateral reuse and financial stability is positive. Second, the degree of collateral reuse

can still negatively impact financial stability through its indirect effects on agents’ risk-

taking choices, which become concerning in tail events. Therefore, monitoring the degree of

9Moreover, the likelihood of a crisis also increases as agents have less cash buffers to absorb shocks.
10An increase in the use of collateral, in particular to prevent debt dilution, can exacerbate “collateral

overhang” problem, which constrains future borrowing and investment, as Donaldson et al. (2020) show.
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collateral reuse remains important, as higher degrees of collateral reuse can be followed by

greater leverage and other risk-taking behaviors of market participants. Third, supporting

the price and liquidity of the collateral asset can be an effective intervention by a central

bank by eliminating a crisis and significantly improving social surplus. Therefore, policy

interventions such as a ‘dealer of last resort’ or a standing facility for repos and other SFTs

can be important, especially when collateral reuse is prevalent.11

1.1. Relation to the Literature

Many papers have studied the effect of collateral reuse while allowing other factors to

change simultaneously. Infante (2019), Gottardi et al. (2019), Park and Kahn (2019), and

Brumm et al. (2023) studied how collateral reuse can change liquidity, leverage, and asset

prices by allowing more profit-making opportunities to an intermediary. Maurin (2022)

and Infante and Saravay (2024) show how collateral reuse can affect safe asset demand and

safe asset scarcity, which in turn affect liquidity and prices in the market. Infante and

Vardoulakis (2021) find a novel feature of collateral reuse, namely collateral runs, where an

ultimate borrower (or lender of collateral) withdraws from its repo with an intermediary due

to concerns that the intermediary may default and thus, the borrower is unable to retrieve

their collateral. Chang (2021) further studies this aspect of lender default and how it is

related to leverage, asset price, and network formation. However, collateral reuse is often a

byproduct in such papers, and the effect of collateral reuse is confounded by other factors.

Therefore, we make a novel contribution to the literature in our first two main results by

formally analyzing the effect of changes in the degree of collateral reuse while holding all

else equal, such as available liquidity, network (length of a lending chain), liability, and other

risks.

Furthermore, to the best of our knowledge, we are the first to introduce collateral reuse

11Central bank interventions to support asset prices are not unprecedented and are quite successful. For
example, commercial paper was directly purchased by the Federal Reserve through the Commercial Paper
Funding Facility during the GFC and COVID-19 episode in response to investor outflows from money market
funds.
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to the financial networks literature. Examining collateral reuse through the lens of financial

networks is necessary to properly analyze its effect. This is because models with anonymous

agents or a simple lending chain are unable to capture the effect of changes in collateral

reuse. In a model with anonymous Walrasian markets, the flow of collateral as well as the

flow of payments cannot be tracked. In models with a simple lending chain (for example,

Glode and Opp (2023) and He and Li (2022)), greater collateral reuse implies that more

agents are joining the lending chain, resulting in a higher likelihood of defaults and total

endowments. Since our model is a financial network, we allow for changes in the degree of

collateral reuse while holding the length of the intermediation chain fixed.

Therefore, we contribute to the financial network literature by directly extending the

model of Chang and Chuan (2024) by analyzing the effect of collateral reuse. In particular,

our paper is related to the literature on contagion through payment networks, pioneered

by Allen and Gale (2000) and Eisenberg and Noe (2001), and extended by Elliott et al.

(2014), Acemoglu et al. (2015), Bernard et al. (2022), and Donaldson et al. (2022). Most

recently, the literature has incorporated the dimension of collateral as a channel of contagion

by Chang and Chuan (2024).

Moreover, our paper contributes to the literature on multiple equilibria in financial net-

works by Rogers and Veraart (2013), Roukny et al. (2018), and Jackson and Pernoud (2024).

In these papers, self-fulfilling defaults can often cause multiplicity of equilibria in financial

network models. For example, in one equilibrium, agent 1 is solvent when agent 2 pays agent

1 and is also solvent. In another, both default as they can no longer pay each other back.

The source of multiplicity of equilibria in our model is different, as the vector of payments

itself is unique for a given asset price. Thus, in our model, the multiplicity of equilibria is

indexed by asset price. If the collateral price is high, then no agent suffers significant loss

from a default, and the aggregate wealth is enough to buy any collateral asset on sale at its

highest price. However, if the collateral price is low, then a default causes significant losses to

counterparties, resulting in a lower aggregate wealth, which further decreases the asset price

9



and eventually leads to full contagion, i.e., all agents default and the collateral asset price

plummets to zero. Therefore, our model provides a novel source of equilibria multiplicity

and analyzes its effect on contagion.

We also incorporate equilibrium selection by applying both global games and best

response dynamics (BRD). The global games method in the literature (Carlsson and

Van Damme, 1993; Morris and Shin, 1998; Goldstein and Pauzner, 2005; Kuong, 2021;

Kashyap et al., 2024; Carapella et al., 2025) provides a natural, interpretable process of equi-

librium selection in our financial networks model with endogenous collateral price. We also

find an interesting characteristic of fire sales, which makes the threshold type (or marginal

buyer) under global games to be the lowest type, contrary to many other models such as bank

run models (see Section 4 for more details). Moreover, we examine an alternative model for

equilibrium selection, BRD, based on Gilboa and Matsui (1991) and Matsui (1992), inspired

by the application of such methods in Mäder (2024).

Our final result finds that greater collateral reuse can increase the riskiness of agents which

relates to the literature on systemic risk and excessive risk-taking behavior by individuals. In

particular, Elliott et al. (2021), Galeotti and Ghiglino (2021), Altinoglu and Stiglitz (2023),

Jackson and Pernoud (2024), and Shu (2024) show that correlation of risks, expectation of

bailouts, and correlated payoff structures could lead to a collective increase in risk-taking,

resulting in systemic risk-shifting by agents in a financial network. Our result features similar

mechanisms, demonstrating how endogenous risk-taking behavior can be exacerbated with

an increase in collateral reuse.

2. Model of Contagion

We first present the contagion model based on Chang and Chuan (2024). The model has

both the counterparty liability dimension as in Eisenberg and Noe (2001) and the assets that

can be used as collateral, whose prices are endogenously determined. The main heterogeneity
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of interest comes from how agents are connected to each other through collateralized debt

relationships.

2.1. Agents and Goods

There are three periods t = 0, 1, 2 and two goods, cash and an asset, denoted as e and

h, respectively. Cash is the only consumption good, the numeraire good, and storable. The

asset can be used as collateral at t = 0 and yields s amount of cash at t = 2. Agents gain no

utility from just holding the asset. All agents know the value of the asset payoff s at t = 1;

however, the asset payoff is realized at t = 2.

There are n different agents in the set N = {1, 2, . . . , n}. Agents are risk neutral, and

their utility is determined by how much cash they consume at t = 2. Each agent is investing

in a long-term illiquid investment project that will give ξ amount of cash at t = 2 if it is held

until maturity. The payoff from this long-term project is not pledgeable. At t = 1, agent j

can (partially) liquidate the project by lj ∈ [0, ξ] amount to receive the scrap value of ζlj in

cash, where 0 ≤ ζ < 1 represents the liquidation efficiency. For simplicity, we focus on the

case in which ζ → 0, so liquidation yields infinitesimally small amount of cash.12 Therefore,

agents liquidate the entire ξ when they default, and the total amount of liquidation of long-

term projects due to defaults corresponds to the total loss of social surplus, as we show later

in Lemma 1.

All information is common knowledge, and the markets for both goods are competitive

Walrasian markets. Thus, agents are price-takers with symmetric information. The price of

the asset is pt for t = 0, 1, 2. From now on, we use p instead of p1 for the price of the asset

at t = 1, as our main focus is analyzing the contagion in t = 1.

12All the main results remain to hold even when this assumption is relaxed as shown in Chang and Chuan
(2024).
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2.2. Collateralized Debt Network

At t = 0, each agent j ∈ N holds ej amount of cash and hj amount of assets, which are

exogenously given, until t = 1. We endogenize the amount of cash and the amount of long-

term investment later in Section 5. At t = 1, agents can buy or sell the asset in a competitive

market. Also at t = 0, agents borrow or lend cash using assets as collateral. All borrowing

contracts are a one-period contract between t = 0 and t = 1 and are exogenously determined.

A borrowing contract consists of the promised cash payment, the ratio of collateral posted

per unit of promised cash, and the identities of the borrower and the lender. Denote dij

as the promised cash amount to pay at t = 1 to lender i by borrower j. Denote cij as the

collateral ratio per one unit of promised cash. If borrower j pays back the full amount of

promised dij, then the lender returns the collateral in the amount of cijdij. Otherwise, the

lender either keeps or liquidates the collateral, and the cash value of the collateral is cijdijp.

The lender has to return any excess value of the collateral to the borrower, cijdijp − dij, if

there is any. Normalize cii = dii = 0 for all i ∈ N without loss of generality.

Define C = [cij] and D = [dij] as the matrices of collateral ratios and promised debt

payment amounts, respectively. A collateralized debt network is a weighted, directed mul-

tiplex graph that is formed by the set of vertices N and links with two layers C and D. A

(collateralized debt) network can be summarized by a double (C,D) given at t = 0. Denote

the total inter-agent liabilities of agent j as dj ≡
∑

i∈N dij.

We assume that collateral constraints and resource constraints hold, implying

∑
k∈N

cjkdjk + hj ≥
∑
i∈N

cijdij ∀j ∈ N, (1)

∑
i∈N

hi ≥
∑
i∈N

cijdij ∀j ∈ N. (2)

The collateral constraint, (1), means that the total amount of collateral a borrowing agent

j posts cannot exceed the amount of assets agent j has—either from other agents’ collateral
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that agent j has received as a lender or from the amount of assets agent j purchased outright.

This collateral constraint allows for reuse (rehypothecation) of collateral.13 The resource

constraint, (2), means that the total amount of assets an agent is posting cannot exceed the

total amount of assets in the economy.14

Each agent can be hit by a negative liquidity shock in cash with an absolute value of

ϵ > 0 at t = 1. Agents should pay the liquidity shock first before paying other agents. We

interpret ϵ as a senior debt payment to external creditors, who also have linear utility.15

A realized state of the liquidity shocks is ω ≡ (ω1, ω2, . . . , ωn), and the set of all possible

states is Ω. For example, ωj = 1 if agent j is under a liquidity shock, and ωj = 0 otherwise.

Liabilities other than the liquidity shock are all equal in seniority. Hence, any net wealth

left after paying the liquidity shocks will be distributed across all agents on a pro rata basis.

2.3. Timeline and Social Surplus

The timeline of the model, depicted in Figure 1, is the following. Agents’ cash and asset

holdings as well as debt network are exogenously given at t = 0. At the beginning of t = 1,

asset payoff s is publicly revealed, and liquidity shock arrivals ω are realized. Agents pay

their debt, and collateral is returned to the borrower, if not defaulted. If an agent defaults,

the agent liquidates its long-term projects, and any remaining assets in the agent’s balance

sheet will be distributed to all other creditors on a pro rata basis. At the end of t = 1, all

agents’ final asset holdings are determined. At t = 2, the payoff of the asset is realized, and

agents consume all the cash they have and gain utility.

We define the formal definition of our equilibrium concept, full equilibrium, in the next

section. In any full equilibrium, define the utilitarian social surplus as the sum of the payoffs

13The same collateral can be reused an arbitrary number of times, generalizing typical models of reuse of
collateral (Gottardi et al., 2019; Infante, 2019; Park and Kahn, 2019; Infante and Vardoulakis, 2021).

14If a resource constraint is not present, then there can be a spurious cycle of collateral justifying any
arbitrary amount of collateral circulating in the economy.

15Alternative interpretations of negative liquidity shocks include lower-than-expected short-term returns,
a sudden increase in deposit withdrawals, wage expenses, taxes, and fines.
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network of debt
(C,D) is formed,

and cash and asset holdings
(ej, hj)j∈N are determined

asset payoff s
publicly revealed

t = 0 t = 1

final asset
holding determined

debt is paid back,
projects are liquidated
and assets are traded

liquidity shocks
ω realized

t = 2

payoff
realized

Figure 1: Timeline of the model

of all agents at t = 2,

U =
∑
i∈N

(πi + Ti) ,

where Ti ≤ ϵ is the transfer from agent i to its senior creditors (liquidity shock), which

simply transfers to t = 2, and πi is the agent’s long-term profit evaluated at t = 2.16

Lemma 1. For any full equilibrium, the social surplus in the economy is equal to

U =
∑
j∈N

(ej + hjs+ ξ)−
∑
i∈N

li.

All proofs are relegated to Appendix C. Lemma 1 clarifies that the source of social

inefficiency comes from the early liquidation of the long-term project, caused by insufficient

liquidity.17

16This definition of social surplus is consistent with that of Acemoglu et al. (2015).
17Technically, agents may liquidate their long-term projects early if the asset price is low enough to

make an asset purchase more profitable than the long-term project. By focusing on the case in which ζ is
infinitesimally small, we eliminate such cases. See Chang and Chuan (2024) for detailed analysis with a more
general setup.
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2.4. Full Equilibrium

In this section, we define the equilibrium concept and its relevant elements following

Chang and Chuan (2024).

2.4.1. Payment Rules

Let xij(p) denote the actual payment net of collateral to agent i from agent j when the

asset price is p at t = 1. This payment will be defined later in (5). The argument p is often

omitted from now on. The total cash inflow of agent j is

aj(p) ≡ ej + hjp+
∑
k∈N

cjkdjkp−
∑
i∈N

cijdijp+
∑
k∈N

xjk(p), (3)

where the second term is the market value of j’s direct asset holdings; the third and fourth

terms are the market values of collateral assets posted by j’s borrowers and posted to j’s

lenders, respectively; and the fifth term is the actual payment net of collateral from j’s

borrowers. The total amount of liabilities net of collateral posted for agent j is

bj(p, ω) ≡
∑
i∈N

(dij − cijdijp) + ωjϵ, (4)

which can be considered the required total cash outflow. Note that the first term of the

right-hand side can be negative if the contract is overcollateralized—that is, dij < cijdijp.

The function argument ω is often omitted for simplicity from now on.

If aj(p) ≥ bj(p), then xij = dij − cijdijp for any i ̸= j, i.e., agent j is solvent and pays

its obligations in full. If aj(p) < bj(p), then agent j defaults and liquidates the long-term

project.18 See Appendix B for the full description of the agent’s optimization problem at

t = 1 and derivation of its solution.

18A debt contract references the market price of the collateral, not the fair value s, regardless of whether
the lender sells off the asset. While we do this to reflect the default and settlement procedures in the real
world, lenders would not accept the collateral at par to begin with, as they would rather demand the full
debt amount in cash to purchase potentially cheaper assets priced at market value at t = 1.
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Figure 2: Flows of cash and collateral for three cases

Note: The two nodes, i and j, represent the lender and borrower of a contract, respectively. The blue dashed

arrows represent flows of cash, and the red arrows represent flows of collateral. The left figure shows the

flows in t = 0. The top-right figure shows the flows in the case in which the borrower pays in full in t = 1,

the middle-right figure shows the flows in the case with borrower default in t = 1, and the bottom-right

figure shows the flows in the case in which the collateral value exceeds the payment in t = 1.

Given the payment rules, the actual payment to lender i from borrower j can be de-

termined. If agent j can pay all of the obligations, then j can pay the promised amount

such that xij(p) = dij − cijdijp as lender i returns the collateral to borrower j, as depicted

in the top right of Figure 2. If the total value of collateral cijdijp is greater than the debt

amount dij, then the actual net payment xij(p) can be negative because the more valuable

collateral is returned to the borrower from the lender’s balance, as depicted in the bottom

right of Figure 2.19 Agent j defaults if the payment net of collateral is less than the promised

payment, xij(p) < dij − cijdijp for some i ∈ N . The extreme case is agent j being unable to

19The property of collateral directly covering the debt payment is important. For example, if netting
the debt with collateral was not possible, then after a negative liquidity shock to the system, all assets
posted as collateral would be put on fire sale as all agents liquidate their collateral simultaneously to raise
cash for payment obligations. This version of the model is equivalent to having no collateral at all, as in
Acemoglu et al. (2015), because collateral plays no direct role in shaping debt. Indeed, this is not the case in
the real world, as market participants typically designate particular collateral and can effectively pay their
obligations by giving up their collateral as previously described. In other words, collateral plays the role of
money across the debt network when agents pay their liabilities.
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pay the liquidity shock in which the actual payment will be xij(p) = 0, and the lender keeps

the collateral, as depicted in the middle-right section of Figure 2. In an intermediate case,

agent j can pay the liquidity shock but cannot pay the inter-agent debt in full. Under such

a case, j’s remaining wealth is paid out on a pro rata basis. This interaction is formulated

as the following payment rule:

xij(p) = min

{
dij − cijdijp , qij(p)

[
aj(p) +

∑
i∈N

[cijdijp− dij]
+ − ωjϵ

]+}
, (5)

where [·]+ ≡ max{·, 0} and qij(p) is a weight under the weighting rule

qij(p) =
[dij − cijdijp]

+∑
k∈N

[dkj − ckjdkjp]
+ (6)

for the pro rata basis. Note that if weights are not defined (
∑
k∈N

[dkj − ckjdkjp]
+ = 0), the

weighting rule is never used, because any lender will be paid in full.20

20The model incorporates the role of explicit collateral, as agents can settle the payments by giving
up their collateral to their lenders. This is in line with the standard repo contracts such as the Securities
Industry and Financial Markets Association’s (SIFMA) Master Repurchase Agreement (MRA), used by most
U.S. dealers, and the SIFMA/International Capital Market Association (ICMA) Global Master Repurchase
Agreement (GMRA), used for non-U.S. repos (Baklanova et al., 2015). According to both the SIFMA MRA
and SIFMA/ICMA GMRA, after determining the market value of the collateral, all repo exposures between
the two counterparties are netted off, and whoever owns the residual sum must pay it by the next business
day, including the interest on late payment. Hence, the lender has recourse to the borrower’s balance sheet
and can claim any payment due net of the market value of the collateral (Gottardi et al., 2019). The
non-defaulting party may either immediately sell in a recognized market at prices the non-defaulting party
reasonably deems satisfactory or give the defaulting party credit for collateral in an amount equal to the
price obtained from a generally recognized source. The non-defaulting party may choose the latter option
when the market is under stress, as additional sales of collateral would only decrease the price and the value
of the collateral is greater than the current market price.
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2.4.2. Fire Sales and Market Clearing

For a given network and state realization, or economy, (N,C,D, e, h, s, ω), where e ≡

(e1, e2, . . . , en) and h ≡ (h1, h2, . . . , hn), the net wealth of agent j is

mj(p) ≡ aj(p)− bj(p) = ej + hjp+
∑
k∈N

cjkdjkp− ωjϵ−
∑
i∈N

dij +
∑
k∈N

xjk(p) (7)

under the payment rules. Equation (7) consists of the following: cash holdings, the market

value of the asset holdings, the market value of collateral received, a negative liquidity shock,

the total payment to be paid, and the actual net payment received. If mj(p) < 0, then agent

j defaults.

Denote the fire-sale amount of agent j as

ϕj(p) = min
{
[hjp−mj(p)]

+ , hjp
}
. (8)

If agent j’s net wealth subtracted by j’s asset holdings, mj(p)− hjp, is enough to cover all

of the payments (positive), then ϕj(p) = 0 (no fire sales). If agent j’s net cash flow is not

enough without the sale of asset holdings, then ϕj(p) > 0. If the cash shortage exceeds the

total asset holdings (hjp−mj(p) > hjp), then the fire-sale amount reaches its upper bound

ϕj(p) = hjp. Note that a defaulting agent would always have ϕj(p) = hjp.

Recall that the asset market is a perfectly competitive Walrasian market. Unless there is

not enough cash to purchase all of the asset sales in the market at the asset’s fundamental

value s, the market price will always be the fair value s. However, if there is not enough

cash in the market, then the asset price can go below its fundamental value as p < s, as

the market clearing condition becomes a cash-in-the-market pricing condition à la Allen and
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Gale (1994). The market clearing condition can be summarized as

∑
j /∈D(p)

[mj(p)− hjp]
+ =

∑
i∈N

ϕi(p) if 0 ≤ p < s

∑
j /∈D(p)

[mj(s)− hjs]
+ ≥

∑
i∈N

ϕi(s) iff p = s,

(9)

where D(p) is the set of agents who default under price p. We assume s < (n− 1)e0/h0, i.e.,

the asset price is at its fundamental value when only one agent defaults.

2.4.3. Equilibrium Properties

For the given rules, the definition of the equilibrium is as follows.

Definition 1. For given (N,C,D, e, h, s, ω), if payments {xij(p)} satisfy the payment rule

(5), net wealth {mj(p)} is determined by the net wealth equation (7), the fire-sale amount

{ϕj(p)} is determined by equation (8), and price p clears the market as in (9), then

({xij}, {mj}, {ϕj}, p) is a full equilibrium.

In line with the literature, we refer to the interim equilibrium of our full equilibrium with-

out the fire sales and market clearing conditions—that is, the payment decisions, {xij(p)},

which satisfy the payment rules, for a given asset price p—as the payment equilibrium of

(N,C,D, e, h, s, ω) and p.

The following proposition from Chang and Chuan (2024) shows that the full equilibrium

always exists.

Proposition 1 (Chang and Chuan (2024)). For any given economy (N,C,D, e, h, s, ω), a

full equilibrium always exists and is generically unique for a given equilibrium price. Fur-

thermore, there exists a full equilibrium with the highest price among the set of full equilibria.

Even though there could be multiple full equilibria, each equilibrium price has a (gener-

ically) unique payment equilibrium. Chang and Chuan (2024) focused on the unique maxi-
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mum full equilibrium that has the highest market clearing price among the set of equilibria.

In this paper, we explore all possible equilibria in the following Section 3.

3. Multiple Equilibria and Contagion

In this section, we study the properties of all equilibria in the baseline model. We show

the existence of three equilibria for any network in the class of networks we focus on and

analyze how contagion patterns and resulting social surpluses differ across these equilibria.

Finally, we show the effect of collateral reuse on these equilibria.

3.1. Preliminaries

We focus on regular networks in which the total inter-agent claims and liabilities of all

agents are equal, i.e.,
∑

i∈N dij =
∑

i∈N dji = d for all j ∈ N for some d ∈ R+. Also,

we assume that all agents hold the same amounts of cash and assets as ei = e0 > 0 and

hi = h0 > 0 for all i ∈ N . Similarly, we assume that all agents have the same uniform

collateral ratio, cij = c for all i, j ∈ N . These homogeneity assumptions guarantee that any

variation in systemic risk is due to the level of collateral and the interconnectedness of agents

while abstracting away from effects from size, balance sheet, or hierarchical heterogeneity

(Acemoglu et al., 2015; Chang and Chuan, 2024). For simplicity, we assume that the liquidity

shocks are randomly received by only one agent, so ωi = 1 if agent i receives the shock, and

ωj = 0 for all j ∈ N, j ̸= i.

In this setup, the pattern of contagion depends on the level of collateral ratio c. In

particular, there are two collateral thresholds, one that prevents any contagion at all, and

the other prevents contagion through collateral price in the maximum equilibrium.

Proposition 2 (Collateral Ratio Thresholds). If c ≥ c̄(s, n) ≡ 1

s
, then no agent defaults in

the maximum equilibrium for any given network D. If c ≥ c(s, n) ≡ d− (n− 1)e0 + h0s

ds
,

then the asset price is p = s in the maximum equilibrium for any given network D.

20



Acemoglu et al. (2015) propose a useful concept for analyzing contagion pattern:

Definition 2. The harmonic distance from agent i to agent j is

µij = 1 +
∑
k ̸=j

(
dik
d

)
µkj, (10)

with the convention that µii = 0 for all i.

As noted by Acemoglu et al. (2015) and Chang and Chuan (2024), the harmonic distance

from agent i to agent j depends not only on how far each of its immediate borrowers is from

j, but also on the intensity of their liabilities to i, by dik/d. Chang and Chuan (2024) utilizes

this measure to derive implications on contagion in collateralized debt networks.

Proposition 3 (Chang and Chuan (2024)). Suppose that agent j is under a negative liquidity

shock of ϵ > ne0. Then, there exists µ∗(p) = (d− cdp)/(e0 + h0p), and the following holds:

1. If there is a nonempty set S such that agent i ∈ S does not default, then the equilibrium

price is either p = s or determined by

1′Gµsj =
d− cdp

e0 + h0p
1′G1+

nh0p

e0 + h0p
, (11)

where µsj is the vector of harmonic distances from agents in S to j, G is a |S| × |S|

non-singular M-matrix,21 and 1 is a vector of ones. Furthermore, if µij < µ∗(p), then

agent i defaults.

2. If all agents default, then the equilibrium price is p = 0 and µij < µ∗(0) for all i.

3. If µ∗(p) < 1 for the equilibrium price p, then no other agents default.

We restrict our attention to cases in which contagion is meaningful, while collateral can

play its role in mitigating contagion but does not fully prevent any contagion. Thus, we

21If matrix A can be expressed as A = sI −B, s ≥ ρ(B), B ≥ 0, where ρ(B) is the spectral radius of B,
then A is an M-matrix (Berman and Plemmons, 1979, p. 133). An M-matrix is non-singular if s > ρ(B).
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assume ϵ > ne0, liquidity shock is significant enough, c(s, n) ≤ c ≤ c̄(s, n), collateral is

sufficiently large but not exceedingly large,22 and d > (n−1)e0, the inter-agent liabilities are

large enough (agents are significantly connected). Proposition 3 shows that if c < c(s, n),

then the equilibrium asset price p can be lower than its fundamental value s even in the

maximum equilibrium. In other words, we focus on the case in which the size of the liquidity

shock is large enough to result in full contagion in the network, while the amount of collateral

is large enough to prevent the asset price from falling below its fundamental value s in the

best equilibrium. Finally, we focus on the set of networks such that any network has harmonic

distances smaller than µ∗(0) when p = 0. In other words, all agents default when p = 0, but

because of the region of c we are focusing on, p = s in the maximum equilibrium. We do not

focus on disjointed networks, as they have limited relevance to reality and financial stability

concerns.23

Under such a setup, the collateral ratio c is equivalent to the degree of collateral reuse in

the network. This is because collateral circulation depends only on c while everything else

is fixed. Hence, from now on we will refer to c as the degree of collateral reuse.

3.2. Characterization of Multiple Equilibria

First, we show the existence and characterization of multiple equilibria.

By Lemma 6 of Chang and Chuan (2024), the market clearing asset price can be repre-

sented as

p = min

{∑
j∈N [mj(p)]

+∑
j∈N hj

, s

}
. (12)

Therefore, (12) implies there are generally three different cases of market clearing price:

p = s when the upper bound of the asset price is binding, p = 0 when the lower bound of

22If c > c̄(s, n), then there will be no default at all, as even the shocked agent can pay its debt by giving
up its collateral.

23Alternatively, our results can be applied to each of the components of a network that has multiple
disjoint components.
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the asset price is binding, and p =

∑
j∈N [mj(p)]

+

nh0
when the asset price is determined by

cash-in-the-market pricing. We first show that these three different equilibria exist in the

class of networks we focus on.

Proposition 4 (Three Unique Equilibria). If c ≥ c(s, n) and µij < µ∗(0) for any i, j ∈ N ,

then three different equilibria exist generically:

1. the maximum equilibrium is when p = s with the least number of defaults;

2. the minimum equilibrium is when p = 0 with all agents default; and

3. the intermediate equilibrium is when 0 < p < s such that the market clearing

condition implies cash-in-the-market pricing, i.e., p =

∑
j∈N [mj(p)]

+

nh0
.

The first important property of these multiple equilibria is the uniqueness of the inter-

mediate equilibrium. This is because the aggregate net wealth
∑

j∈N [mj(p)]
+ crosses the

value of the total assets nh0p only once before reaching p = 0 (see Lemma 4 in Appendix

A.2 and the proof of the proposition in Appendix C.4). Therefore, we only need to focus

on how this unique intermediate equilibrium varies across different networks D and different

degrees of collateral reuse c. Figure 3 provides a visual illustration of this result.

One of the most interesting properties of these multiple equilibria is their self-fulfilling

aspect. This property aligns well with the recent literature on safe assets, for example,

Brunnermeier, Merkel, and Sannikov (2024), as even the price of a safe asset (such as the

asset in our model that has no uncertainty in its fundamental value) depends on the self-

fulfilling expectations, and thus, could be fragile. If the market price remains high as p = s,

then collateral is sufficient to cover counterparty default losses. Therefore, there is limited

amount of fire sales and the remaining agents have enough cash to purchase the small amount

of asset on sale at its fundamental value s. However, if the market price plummets to p = 0,

then collateral does not cover any counterparty default losses (even though its fundamental

value remains to be s). Therefore, the liquidity shock spreads to all agents in the network
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Figure 3: Illustration of multiple equilibria

Note: The x-axis represents asset price p, and the y-axis is the resulting values of the aggregate net wealth
and the aggregate supply. The blue dashed line represents the linear function of the value of the aggregate
supply nh0p. The red piecewise linear function represents the aggregate net wealth. The slope of the
aggregate net wealth function increases as the number of defaults decreases by Lemma 4 in Appendix A.
For the corresponding price at each inflection point of the aggregate net wealth function an agent defaults
just below that price. At p = s, the aggregate net wealth is above the value of the aggregate supply, so the
maximum equilibrium with p = s exists. At p∗(c,D), the two functions intersect, implying that is the
intermediate equilibrium. At p = 0, all agents default, resulting in the aggregate net wealth of zero,
implying that the minimum equilibrium with p = 0 exists.

through counterparty default losses, causing all of them to default. Thus, no agent has extra

cash to purchase the assets on sale at a positive price, i.e., p = 0.

The case of the intermediate equilibrium is more subtle. Even though there can be addi-

tional defaults under the intermediate equilibrium compared with the maximum equilibrium,

the intermediate equilibrium can still arise even if no additional agents default. In such a

case, the market clearing condition could hold in equality p < s, which equates to the value

of the aggregate net wealth and the value of the total assets. Thus, the asset price can

arbitrarily become either p = s or p < s even without additional defaults.

Finally, we emphasize that the source of self-fulfilling defaults and multiplicity of equi-

libria in our model is fundamentally different from the forces of self-fulfilling insolvencies

24



Asset Price Net Debt Aggregate Net Wealth Fire-Sales Amount Liquidations
1 0 16 2 10

0.25 7.5 2.5 8 30
0 10 0 10 50

Table 1: Three equilibria with 5 agents in a ring network

and multiplicity of equilibria in typical models in the literature, such as the one in Jackson

and Pernoud (2024). Jackson and Pernoud (2024) propose a model in which self-fulfilling

insolvencies and multiplicity arise if a certain type of dependency cycles exists in the net-

work. Such a self-fulfilling insolvency can arise in their model due to the assumption of

failure cost, which further erodes the net wealth of a defaulting agent once the agent hits

the default threshold. In contrast, our model does not incorporate any additional decline in

net wealth other than the deadweight loss of liquidating long-term projects, which cannot

be used to pay others anyway. Therefore, our model does not allow multiplicity of equilibria

due to self-fulfilling insolvencies due to exogenous failure costs. The source of equilibrium

multiplicity in our model is the interaction between collateral asset price and defaults and

payments in the network. Hence, we are showing a novel source of multiplicity of equilibria.

3.2.1. Example

Suppose there are 5 agents that form a ring network in which agent 1 owes d to agent 2,

who owes d to agent 3, and so on, with agent 5 owing d to agent 1. Each agent is endowed

with 2 assets (h0 = 2), 2 units of cash (e0 = 2), and an investment project valued at ξ = 10

at t = 0. The asset has a fair value of s = 1, and its price p is determined as in (9). Each

agent owes a total debt amount of d = 10 to the next agent along the ring and posts a

collateral amount of cd = 10, so the debt is fully collateralized. We refer to d − cdp as net

debt. Suppose that only agent 1 is under a large liquidity shock of ϵ = 15.

Table 1 summarizes three different equilibria in this example. We describe these equilibria

in more detail in the following paragraphs.

For the maximum equilibrium, suppose p = s = 1 and therefore, the net debt amount is
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d− cdp = 0. Agent 1 liquidates, in face of the liquidity shock, and has 0 net wealth. Because

the remaining agents have no additional payments to make, they each have a net wealth of

e0 + h0p = 4. Hence, the aggregate net wealth is 16, which, when divided by 10 (the total

assets in the market) yields 16
10
> p = 1, meeting the market clearing condition. Therefore,

the maximum price p = s = 1 is an equilibrium.

For the intermediate equilibrium, as depicted in the left panel of Figure 4, suppose

p = 0.25 and the net debt amount is 7.5. Agent 1 still defaults with 0 remaining wealth.

But now, agent 2’s remaining wealth is e0+h0p = 2.5. Since 2.5 < 7.5, agent 2 cannot fulfill

her debt obligation, defaults, and pays agent 3 her remaining wealth of 2.5 who now has a

remaining wealth of 5. Similarly, because 5 < 7.5, agent 3 defaults and passes her remaining

wealth to agent 4. Agent 4 has a remaining wealth of 7.5 and is able to pay agent 5 in full.

Agent 5’s net wealth after payment to agent 1 is 2.5, which is also the aggregate net wealth

since agents 1-4 have 0 net wealth. Dividing 2.5 by 10, the market price is p = 0.25, which

is the initial starting price. Thus, p = 0.25 is also an equilibrium. Because 3 agents are

defaulting, they also liquidate their long-term projects, i.e., the total amount of liquidations

is 3× ξ = 30.

For the minimum equilibrium, as depicted in the right panel of Figure 4, suppose p = 0

and the net debt amount is 10. Agent 1 defaults and pays agent 2 nothing. Agent 2’s

wealth comprises of only her cash e0 = 2, which is not enough to pay her debt since 2 < 10.

She defaults and pays her remaining wealth to agent 3 whose remaining wealth is now 4.

Similarly, agents 3, 4, and 5 default because none are able to fulfill their debt liability of

10. Since everyone defaults, the aggregate net wealth is 0 and also total liquidations are 50.

Therefore, the lowest (minimum) price is also an equilibrium.

3.3. Collateral Reuse and Changes in Equilibria

Now, with the full characterization of the multiple equilibria in collateralized debt net-

works, we examine how changes in collateral reuse affect all equilibria. By Proposition 4,
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Figure 4: The intermediate equilibrium and the minimum equilibrium

Note: Each node in the figure represents an agent. Red nodes represent defaulting agents and gray nodes

represent solvent agents. Arrows represent net debt obligations d − cdp, and the numbers next to arrows

represent the actual payment amounts. Red numbers represent amounts below d − cdp, and blue numbers

represent the full payment amount d − cdp. The left panel depicts the intermediate equilibrium, and the

right panel depicts the minimum equilibrium.

we only need to focus on changes in the intermediate equilibrium. Denote the unique in-

termediate equilibrium for the given collateral ratio and network as p∗(c,D). The following

proposition states that the intermediate equilibrium price is decreasing in the degree of

collateral reuse.

Proposition 5 (Collateral Reuse and Price). Suppose that all the assumptions in Proposition

4 hold. Then, the intermediate equilibrium price p∗(c,D) is decreasing in the degree of

collateral reuse c regardless of the network structure D.

This somewhat counterintuitive result of Proposition 5 is a result of an intricate in-

teraction between the intermediate equilibrium market clearing condition and the solvency

condition. Figure 5 provides a visual illustration of the result. We describe the intuition

behind this result in the following paragraphs.

First, note that an increase in c implies that agents in the network are receiving greater

value of collateral, cp, if price p is fixed, resulting in increases in the net wealth of all

agents. Then, the market clearing condition in the intermediate equilibrium does not hold
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sp∗(c,D)p∗(c̃, D)
0

Figure 5: Effect of an increase in collateral reuse

Note: The x-axis represents asset price p, and the y-axis is the resulting values of the aggregate net wealth
and the aggregate supply. The blue dashed line represents the linear function of the value of the aggregate
supply nh0p. The red piecewise linear function represents the aggregate net wealth under (c,D). The
magenta dash-dotted piecewise linear function represents the aggregate net wealth under (c̃, D), where
c̃ > c. The slope of the aggregate net wealth functions increases as the number of defaults decreases by
Lemma 4 in Appendix A. For the corresponding price at each inflection point of the aggregate net wealth
function an agent defaults just below that price. At p = s, the aggregate net wealth in both cases is above
the value of the aggregate supply, so the maximum equilibrium with p = s exists. At p∗(c,D) and p∗(c̃, D),
the two aggregate wealth functions intersect with the value of the aggregate supply, respectively, implying
they are the intermediate equilibrium prices. At p = 0, all agents default, resulting in the aggregate net
wealth of zero in both functions, implying that the minimum equilibrium with p = 0 exists in both cases.

with equality if p remains the same. In order to satisfy the market clearing condition with

equality, the market price p has to fall to offset the effect of higher c, i.e., larger amount of

collateral received.

Second, recall that the solvency of agent i depends on its harmonic distance from the

shocked agent j, µij, which is determined by the network structure D, and the harmonic

distance threshold µ∗(p) = (d − cdp)/(e0 + h0p), which is a function of p, by Proposition

3. Even though c increases, if p also decreases, the numerator of µ∗(p) may not decrease as

much (if at all), while the denominator of µ∗(p) decreases, resulting in an overall increase

of µ∗(p). Therefore, the solvency condition becomes harder to meet with the fixed values of
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harmonic distances.

Therefore, an increase in c results in a counterintuitive decline in p due to the cash-in-

the-market clearing condition being satisfied with equality in the intermediate equilibrium,

and a decline in price can only trigger more defaults (despite having higher c), which cause

further declines in p. Although higher c can only increase p in the maximum equilibrium,

the opposite is true for the intermediate equilibrium because of its market clearing condi-

tion. Moreover, this property holds regardless of the network structure D, although the

exact degree of price decline may vary across networks. We highlight the inverse relation-

ship between price and collateral ratio using numerical simulations depicted in Figure 6 for

three network structures.24 These results represent a special case in which the prices in the

intermediate equilibria at each collateral ratio are the same across all three networks despite

having different degrees of liquidations of the long-term investment.

3.4. Policy Implications of Multiple Equilibria

Our results on the multiplicity of equilibria provide a few important policy implications.

First, the result on the existence of three different equilibria in Proposition 4 implies

that the equilibrium can suffer significant swings in social surplus based on changes in co-

ordination of equilibrium. A huge amount of social inefficiency can be realized if agents in

the network coordinate into the minimum equilibrium in which all agents default and inef-

ficiently liquidate their long-term projects. Such a classic bank-run-like coordination failure

has happened countless times throughout history, including most recently the banking cri-

sis in 2023 (Rose, 2023). Therefore, our results show that such a run can materialize in

collateralized debt networks, which do not resemble banks at all.

A natural policy implication for runs is the possibility of policy intervention that prevents

the realization of a bad equilibrium, for example, the Bank Term Funding Program (BTFP)

24In the complete network, each agent owes d−cdp
n−1 to every other agent in the network. In the ring

network, each agent i ̸= n owes d− cdp to i+1, and agent n owes d− cdp to agent 1. The γ-convex network
D† is a convex combination of the complete D̃ and ring networks D̂, i.e., D† = γD̃ + (1− γ)D̂.
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Figure 6: Numerically simulated intermediate price equilibria

Note: We simulate the asset price p and liquidations in the intermediate price equilibrium for each network
for each collateral ratio from c = 0.66 to c̄ = 1. The x-axis represents collateral ratio (c), the left-hand
y-axis represents price (p) up to s = 1, and the right-hand y-axis represents aggregate liquidations of
long-term projects, where ξ = 10 for each agent. As c increases, the intermediate equilibrium price p
decreases, and liquidations monotonically increase across all networks. The ring network has the highest
aggregate liquidations, while the complete network has the least amount of liquidations throughout the
entire collateral range. The γ-convex network, with γ = 0.5, is in between the two networks in terms of
liquidations.

created by the Federal Reserve during the crisis in 2023 (Glancy et al., 2024). A policy

intervention like the BTFP can be effective in our model’s context as well. A central bank

can offer loans at par value s with an interest rate to agents in the network, preventing

the asset price from falling below s. Alternatively, the central bank can act as a ‘dealer of

last resort’, highlighted by Altinoglu and Chang (2022), and provide only a small amount

of support to boost confidence in the market and bring the asset price to its fundamental

value s. However, there is a difference in how a ‘dealer of last resort’ intervention works in

our model, as the intervention works as a coordination device that prevents the minimum
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equilibrium from emerging instead of a signaling device to reduce information asymmetry.25

However, designing a policy intervention and implementing it in time might be challenging

in the modern financial system, where realization of a bad equilibrium happens at a very fast

pace (Kelly and Rose, 2025). The decisions on whether to intervene and when to intervene

can be even more difficult when monitoring and surveillance are not only for examining

business models of banks and depositor bases, as highlighted by Kelly and Rose (2025), but

also for assessing the interconnectedness of the entire system and its interaction with asset

markets. Therefore, establishing a standing facility such as the Federal Reserve’s Standing

Repo Facility (SRF) can be a more practical and effective solution to prevent the minimum

(bad) equilibrium in our model. For example, we can introduce a new agent in the model, the

central bank, which purchases the assets at p = s up to a certain amount, preventing the bad

equilibrium from emerging. That said, the optimality and optimal design of interventions

such as the SRF require a careful cost-benefit analysis (Chang, Klee, and Yankov, 2025),

which is beyond the scope of this paper.

4. Equilibrium Selection

With the characterization of the multiple equilibria in the baseline model, we extend our

model to incorporate equilibrium selection to fully understand how the changes in the pattern

of multiple equilibria alter the realization of equilibrium under equilibrium selection. In

particular, we analyze the likelihood of the best (maximum) and worst (minimum) equilibria

by incorporating both a global games model and a best response dynamics (BRD) model,

separately in each subsection. We find that the main findings are robust to this modeling

choice of equilibrium selection.

25Jackson and Pernoud (2024) suggest an alternative intervention, a bailout, to prevent self-fulfilling
insolvencies along dependency cycles.
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4.1. Global Games

In this section, we consider a model of equilibrium selection with global games tech-

niques à la Carlsson and Van Damme (1993). However, there is a crucial difference between

typical global games models, which require agents’ payoff function to have strategic com-

plementarities such as sequential servicing constraint (Morris and Shin, 1998; Goldstein and

Pauzner, 2005; Kashyap et al., 2024), and fire sale models, which naturally have strategic

substitutability, as one agent’s sale of an asset could be a great opportunity for others to buy

the asset. Kuong (2021) also points out this crucial difference and presents a model in which

self-fulfilling fire sales occur due to an interaction between moral hazard of borrowers and

risk aversion of lenders. In his model, strategic complementarity arises endogenously due

to the moral hazard friction. In our model, strategic complementarity arises endogenously

due to a different reason, which is the endogenous fire sales due to payment obligations that

vary by contagion through networks. Therefore, we make a contribution to the global games

literature by providing an alternative source of strategic complementarity through network

contagion and endogenous market-clearing price.

We modify the baseline model to incorporate equilibrium selection through global games.

In particular, we now assume that the asset payoff is stochastic. The value of asset payoff

θ is uniformly distributed in [0, θ̄], where θ̄ ≥ s.26 Each agent receives a noisy signal of θi,

θi = θ + ψi, where ψi is independently and identically uniformly distributed in [−ψ, ψ]. For

ease of exposition and following the tradition in the global games literature, we consider the

case in which agents are distributed on a continuum. In our context, we can consider each

agent i ∈ N as consisting of a continuum of identical agents with a mass of one, while each

agent in the continuum receives a random signal of the asset payoff.27

Under this setup, agents with θi < −ψ sell the asset regardless of other agents’ behavior,

corresponding to the lower dominance region in typical global games models. However, the

26We can simply assume the upper bound is s, and all the results would remain to hold.
27Chang (2021) and D’Erasmo et al. (2024) use similar assumptions to maintain competitiveness of

markets in their models.
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behavior of the rest of the agents is hard to pin down simply by looking into the static best

response of each agent based on their beliefs about others’, because endogenous asset (fire)

sale decisions and endogenous market-clearing asset price are determined simultaneously.

Therefore, we focus on a threshold strategy that all agents follow. In equilibrium, the asset

price will be endogenously determined by the marginal buyer, who is indifferent between

selling the asset and buying the asset, as in Geanakoplos (1997).

First, we modify the endogenous fire-sale amount of agent j in (8) to incorporate the

entire continuum of agents as j with additional signals. Denote the belief of the marginal

buyer as θ∗, which is θ∗ ∈ [θ − ψ, θ + ψ]. Along the continuum, agents with signal less

than θ∗ sell the asset, while agents with signal greater than θ∗ would only sell if they have

to. Hence, for a fixed realized asset payoff θ, the proportion of
θ∗ − (θ − ψ)

2ψ
is the ‘full

sellers,’ who would sell the assets they think the asset is overpriced, while the proportion of

θ + ψ − θ∗

2ψ
is the ‘reluctant sellers,’ who would sell the asset only if necessary. See Figure 7

for a visualization of the proportions. Then, the endogenous fire-sale amount of agent j in

the entire continuum is

ϕj(p) = min

{
θ + ψ − θ∗

2ψ
[hjp−mj(p)]

+ +
θ∗ − (θ − ψ)

2ψ
hjp, hjp

}
, (13)

where the full sellers sell all the assets and the reluctant sellers sell only the necessary portion

of their asset holdings. Similarly, only the reluctant sellers would participate in the market

as buyers, so the demand side of the market clearing condition (9) becomes

∑
j∈N

θ + ψ − θ∗

2ψ
[mj(p)− hjp]

+ . (14)

Under such a setup, an equilibrium is determined by three factors. First, the asset price

p determines the degree of contagion in the network following the results of Proposition 3.

Second, for the given degree of contagion, the market-clearing price p is determined. Third,

agents who received signals lower than the threshold θ∗ become the full sellers in the asset
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Figure 7: Heterogenous signals and distribution of sellers

market. Hence, the equilibrium under the global games setup should satisfy these three

conditions simultaneously.

Interestingly, θ∗ = θ − ψ is always an equilibrium as long as θ − ψ ≥ p∗(c,D), i.e., the

minimum signal is greater than or equal to the intermediate equilibrium price in Proposition

4. In contrast, if θ + ψ < p∗(c,D), the unique equilibrium is the minimum equilibrium by

contagion through defaults and fire sales. The following lemma formalizes this intuition.

Lemma 2. In the global games setup, the following hold:

1. If θ − ψ ≥ p∗(c,D), there is an equilibrium with the threshold for the marginal buyer

is θ∗ = θ − ψ, and the equilibrium price is p > 0.

2. If θ + ψ < p∗(c,D), then there is a unique equilibrium in which the equilibrium price

is p = 0 and every agent defaults.

Finally, we focus on the limit case of ψ → 0 as in typical models in the global games

literature. This negligible-noise limit case is not only useful for obtaining a tractable unique

equilibrium (Carlsson and Van Damme, 1993), but also helpful in generating results that

are robust to the distribution of noise (Morris and Shin, 2003). Then, the equilibrium

is simplified as θ∗ = θ because all agents can correctly infer the true asset payoff from

their signal. Hence, the unique threshold strategy equilibrium is simply determined by the

realization of the asset payoff θ.

As previously mentioned, a crucial property of the Walrasian market clearing in our model

is that there is strategic substitutability from competition—an additional amount of sales
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will decrease the market price, incentivizing all agents to buy more asset. This market force

prevents the full sellers from selling a non-negligible amount in the equilibrium. However, if

the realization of the asset payoff is sufficiently low, contagion through debt and collateral

market comes into play, making the asset price to go zero and everyone defaults, i.e., p = 0.

The following proposition utilizes the unique intermediate equilibrium price defined by

p∗(c,D) in Section 3.3 and states its role in equilibrium selection.

Proposition 6 (Global Games Equilibrium). In the global games setup with ψ → 0, the

following hold:

1. For any θ ≥ p∗(c,D), the equilibrium price is p = θ.

2. For any θ < p∗(c,D), the equilibrium price is p = 0, and all agents default.

3. The likelihood of the minimum equilibrium with p = 0 decreases as the degree of collat-

eral reuse c increases.

Proposition 6 implies that the unique intermediate equilibrium price p∗(c,D) plays the

role of a threshold for equilibrium selection under global games. The main intuition comes

from the proof of Proposition 4. The intermediate equilibrium price is the minimum price at

which the aggregate net wealth is at or above the value of the aggregate assets. Hence, any

realization of the asset payoff θ > p∗(c,D) can satisfy the second case of the market clearing

condition (9) with strict inequality, i.e., the value of the aggregate net wealth exceeds the

value of the aggregate assets. In contrast, any price below p∗(c,D) cannot satisfy the market

clearing condition with equality until p hits its lower bound, zero. Hence, the likelihood

of the equilibrium price being p = 0 is the probability of θ being less than p∗(c,D), i.e.,

p∗(c,D)

θ̄
.

Moreover, since the intermediate equilibrium price p∗(c,D) is decreasing in the degree of

collateral reuse c by Proposition 5, the probability of the minimum equilibrium decreases,

i.e.,
∂p∗(c,D)/θ̄

∂c
< 0. Hence, the third statement of Proposition 6 holds. In other words, an
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increase in collateral reuse makes the bad equilibrium less likely to arise, improving financial

stability.

4.2. Best Response Dynamics

In this section, we modify the baseline model to incorporate an alternative equilibrium

selection model based on best response dynamics (BRD) following Gilboa and Matsui (1991),

Matsui (1992), and Mäder (2024) in particular. There are a few advantages of BRD over

global games approach. Under global games, agents decide their actions simultaneously based

on beliefs. In an environment where agents can respond to each other’s mutually observed

actions, BRD can capture such interactions, while global games cannot. For example, after

observing a sudden price decline, agents who initially decided not to participate in the

market, can and optimally choose to participate in the market. Moreover, declines in prices

trigger margin calls, leading to further decline of prices by fire sales. Therefore, the actions

and responses in the context of our baseline model are well represented by the iterative

interactions in BRD. As Mäder (2024) puts it, Walrasian tatônnement itself constitutes a

type of BRD.

Following the BRD literature, we assume that all agents first simultaneously select tenta-

tive actions (buy or sell) that are publicly observable. Second, agents iteratively revise their

tentative actions. The game ends when agents collectively no longer wish to revise—that is,

converged to a Nash equilibrium— or when a predetermined time limit has been reached.

Further, we assume that initial actions are chosen by randomly predetermined first-order

beliefs (RB) of agents following Matsui (1992) and Mäder (2024).

Now we formally define the indeterminate game of BRD as Γ = (N,A, π), where each

player i in the set of players N maximizes its profits πi = [π]i by choosing a pure strategy

(action) αi ∈ A such that A = [0, h0p] and A ≡ Πi∈NA. In other words, agents can choose

how much assets to buy or sell after fire-selling the necessary amount for the given asset
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price. This strategy decision changes the amount of fire sales in (8) to

ϕi(p) = min
{
[h0p−mi(p)]

+ + αi, h0p
}
. (15)

The profit function πi depends on the asset price, p, which will be determined by the un-

derlying parameters of the baseline model and then the players’ strategy profile α ∈ A. In

particular, we follow Mäder (2024) and assume that the Walrasian auctioneer raises or lowers

the price in response to excess demand or excess supply. Denote the game’s best response

correspondence as β. Following Matsui (1992) and Mäder (2024), assume that all players

respond to any non-Nash-equilibrium profile by choosing a best response to the prevailing

strategic state. Agents continuously revise their actions for each τ ∈ [0, 1], which is an inter-

nal timing for the BRD path to be realized. Then, a BRD path of the game Γ is a continuous

and right-differentiable function α : [0, 1] 7→ A such that α′(τ) ∈ δ [β(α(τ))− α(τ)] for some

δ > 0, for each τ ∈ [0, 1), and for any α(0) ∈ A. The revision speed δ controls the rate of

convergence as well as the actual convergence, as it can prevent a case of oscillating best

responses.

The basin of attraction B(α†) of an equilibrium α† ∈ E , where E is the set of all equilibria,

is the set of all initial conditions giving rise to at least one BRD path ending in α†—that

is, B(α†) ≡
{
α(0) ∈ A|α(1) = α†} with α′(τ) ∈ δ [β(α(τ))− α(τ)] for some δ > 0, for each

τ ∈ [0, 1). Note that in our fire sales game, each player’s best response is a singleton, i.e.,

β is a function, almost everywhere. Furthermore, we assume that the revision speed δ is

chosen to make a unique equilibrium α† ∈ E at the end of its BRD path for every strategic

initial conditions, in other words, the game is a ‘regular game’ (Matsui, 1992).

Finally, we define the random beliefs (RB) as κ : Θ 7→ A, where Θ is the initial realization

of the probability space, and A ≡ Π
i∈N

A−i is the set of all possible first-order beliefs.

We apply the BRD-RB framework to our baseline model for equilibrium selection, which

closely follows that of Mäder (2024). First, note that both the maximum equilibrium and
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the minimum equilibrium are stable Nash equilibria due to the Walrasian tatônnement and

forced fire sales, respectively. In addition, the intermediate equilibrium with p∗(c,D) is

unstable in the sense that any deviation from p∗(c,D) will lead the BRD path to converge to

either equilibrium with s or 0. For example, if agents buy a little more than the intermediate

equilibrium amount, then the price increases to p > p∗(c,D), leading all the way to p = s.

In contrast, a little downward perturbation to p < p∗(c,D) would lead to a spiral of fire sales

and defaults all the way to p = 0. Therefore, the following proposition holds.

Proposition 7 (Best Response Dynamics). In the BRD-RB setup, the likelihood of real-

ization of the minimum (maximum) equilibrium is proportional to p∗(c,D) (s − p∗(c,D)).

Moreover, the likelihood of the minimum equilibrium decreases as the degree of collateral

reuse c increases.

Proposition 7 implies that the intermediate equilibrium price plays a crucial role in de-

termining the basins of attraction. Any realization above p∗(c,D) leads to a BRD path

to the maximum equilibrium, implying that the basin of attraction is B(s) = (p∗(c, d), s].

Therefore, the lower the intermediate equilibrium price, the larger the basin of attraction

for the best (maximum) equilibrium. Even though the intermediate equilibrium itself is not

a stable equilibrium, it serves an important role in determining resilience of the maximum

equilibrium as Mäder (2024) highlighted. Figure 8 illustrates the result.

Finally, Proposition 7 implies that collateral reuse decreases the likelihood of the worst

(minimum) equilibrium and improves financial stability. As the degree of collateral reuse

increases, the financial system is less likely to be perturbed by random noise and end up in

the socially inefficient fire sales equilibrium with p = 0.

4.3. Discussion on Equilibrium Selection

Both the global games model and BRD model lead to the same conclusion that an

increase in the degree of collateral reuse improves financial stability. The main intuition
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Figure 8: Effect of an increase in collateral reuse

Note: This figure builds upon Figure 5. The red dotted region on the x-axis between p∗(c,D) and s
represents the basin of attraction of the maximum equilibrium with the degree of collateral reuse c. The
magenta lined region on the x-axis between p∗(c̃, D) and s represents the basin of attraction of the
maximum equilibrium with the degree of collateral reuse c̃, where c̃ > c. For other details, see the note
below Figure 5.

is the following. If more collateral guarantees inter-agent payments, then a slight increase

in collateral asset price p leads to even greater net wealth for all agents. Thus, even at a

lower starting price, the equilibrium dynamics in either global games or BRD would lead

to realization of the best (maximum) equilibrium once the price enters a certain threshold.

And that threshold is exactly the intermediate equilibrium price p∗(c,D) we derived from

the baseline model. Hence, an increase in c, which leads to lower p∗(c,D), increases the

likelihood of realization of the best equilibrium.

Proposition 6 and Proposition 7 generate a simple empirical prediction: all else being

equal, there will be fewer crisis episodes in a market with a higher degree of collateral reuse.

Corollary 1 (Empirical Prediction 1). Holding all else equal, a higher degree of collateral

reuse leads to a lower likelihood of crisis.
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5. Endogenous Risk Taking

From the equilibrium selection models, we found that collateral reuse only increases

financial stability by reducing the likelihood of the bad equilibrium, holding all else equal.

However, the degree of collateral reuse is often strongly correlated with other important

factors such as leverage, collateral circulation and runs, lender default, and length of a

lending chain (Chang, 2021; Infante and Vardoulakis, 2021; Maurin, 2022; Brumm et al.,

2023). In this section, we extend our model further to incorporate agents’ endogenous risk-

taking at t = 0 to formally analyze the effect of an increase in collateral reuse. This extension

differs from approaches in the aforementioned literature, as we focus on the direct effect of an

increase in collateral reuse on agents’ risk-taking decisions, while other papers have leverage

and other factors change simultaneously with the degree of collateral reuse. Hence, we are

isolating the effect of collateral reuse itself while holding other factors equal, implying that

all other factors in the aforementioned papers would be added on top of the results we find

here.

Now we assume that each agent has to optimally choose the size of the investment in the

long-term project ξ at t = 0. Each agent has a cash endowment in the amount of e−1 at the

beginning of t = 0. During t = 0, agents decide how much cash to hold e0 and how much to

invest ξ with the given cash endowment e−1. For each unit of cash invested in the long-term

project, an agent receives a payoff of R where R > 1. However, if an agent liquidates the long-

term project due to default (which is the only case due to our simplifying assumption ζ → 0),

the agent suffers a liquidation cost of K(ξ), which is convexly increasing, i.e., dK/dξ > 0

and d2K/dξ2 > 0. The convexity assumption ensures that the optimal choice is not a corner

solution. We can interpret this cost in various ways, such as a pecuniary cost from resulting

litigation and punishment, an additional stake exceeding limited liabilities to have skin-in-

the-game due to moral hazard concerns, and cost of effort for managing a project, which

is compensated by monetary gains if the project succeeds. For ease of exposition, we use
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network of debt (C,D)
and asset holding h0 are given,

long-term investment and cash holdings
(e0, ξ) are endogenously determined

asset payoff s and the initial RB
determined and publicly revealed

t = 0 t = 1

final asset
holding determined

debt is paid back,
projects are liquidated
and assets are traded

liquidity shocks
ω realized

t = 2

payoff
realized

Figure 9: Timeline of the model with endogenous risk-taking

the BRD-RB setup with uniformly distributed RB for equilibrium selection, however, all

the main results and mechanism remain the same under the global games setup. Figure 9

summarizes the timeline of the extended model.

For a given amount of long-term project investment ξ, each agent’s expected cost of

liquidation is

p∗(c,D)K(ξ) + (s− p∗(c,D))
1

n
K(ξ).

In other words, with probability p∗(c,D), the economy arrives at the minimum equilib-

rium, where the agent liquidates and pays the liquidation cost K(ξ). With probability

(s− p∗(c,D)) 1
n
, the economy arrives at the maximum equilibrium and the agent receives the

high liquidity shock, thus the agent still pays K(ξ). In terms of payoffs, the agent increases

its return on cash by investing in the long-term project that yields R, so the net return is

R− 1 per unit of cash invested in the long-term project.

We focus on symmetric equilibrium, as agents are homogeneous ex ante. Then, the

resulting cash holdings and long-term investment amount are the solution to the following
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optimization problem holding others’ decisions and resulting macrovariables as given:

max
e0,ξ

− p∗(c,D)K(ξ) + (s− p∗(c,D))

[
n− 1

n
(ξ + π̃j(e0, D))− 1

n
K(ξ)

]
(16)

s.t. e0 + ξ/R ≤ e−1,

where π̃j(e0, D) ≡ e0 + h0s − (d − cds) + Ej

[∑
j ̸=i xji(s)|ωj = 0

]
is the expected profit of

agent j excluding the long-term investment payoff, when j is not the shocked agent.

At the optimum, the budget constraint is binding, hence, e0 = e−1 − ξ/R. Then, the

first-order condition of (16) with respect to ξ is

[
−p∗(c,D)− (s− p∗(c,D))

1

n

]
K ′(ξ) + (s− p∗(c,D))

n− 1

n

(
1− 1

R

)
= 0, (17)

which can be rearranged as

K ′(ξ) =

(s− p∗(c,D))
n− 1

n

(
1− 1

R

)
[
p∗(c,D) + (s− p∗(c,D))

1

n

] . (18)

By convexity of the liquidation cost function K(ξ), (18) pins down the unique solution ξ

and corresponding e0 to the optimization problem (16). Moreover, the numerator of the

right-hand side of (18) is decreasing in p∗(c,D), while the denominator of it is increasing in

p∗(c,D). Therefore, the optimal investment amount in the long-term project is increasing

when the likelihood of the bad equilibrium decreases, which occurs when c increases. The

following lemma summarizes this result.

Lemma 3. Under the endogenous risk-taking setup, the long-term project investment ξ is

increasing in c, if the resulting equilibrium values satisfy the parametric assumptions in the

baseline model.

Lemma 3 implies that agents take more risk by investing more cash into the long-term

42



project, when collateral reuse increases. The intuition is straightforward. As agents know

that the bad (minimum) equilibrium is less likely with an increase in the degree of collateral

reuse c, they worry less about the liquidation cost of long-term projects and put more weight

on the higher return from the long-term project investment. Thus, agents increase their

long-term project investment amount. Note that the condition on the resulting equilibrium

values in Lemma 3 can be easily satisfied in reverse order—that is, we can set the relevant

parametric assumptions on c, d, and ϵ based on the equilibrium e0 under the endogenous

risk-taking model here.

Finally, the endogenous decrease in e0 by Lemma 3, due to an increase in c, also has a

side effect of increasing p∗(c,D). However, this increase in p∗(c,D) cannot exceed the initial

decrease in p∗(c,D) caused by c, as it would change the agents’ optimal choice of e0 again—

that is, e0 will increase after an increase in p∗(c,D). Therefore, the resulting probability of

the minimum (bad) equilibrium is still below that before the changes in c and e0.

Proposition 6 and Proposition 7 imply that an increase in collateral reuse c improves

financial stability by decreasing the likelihood of the bad (minimum) equilibrium. However,

Lemma 3 implies that there is a countervailing effect, which is an increase in risk-taking

activities and resulting liquidation amount and deadweight losses. Thus, an increase in the

degree of collateral reuse leads to lower social surplus under the minimum equilibrium (during

a crisis), although the minimum equilibrium (crisis) is less likely to occur. The following

corollary summarizes this result.

Proposition 8. An increase in the degree of collateral reuse (c) results in lower social surplus

during a crisis (realization of the minimum equilibrium), although such crises are less likely

to occur.

This result aligns well with the recent literature on excessive risk-taking behavior by

individuals and systemic risk. Elliott et al. (2021), Galeotti and Ghiglino (2021), Altinoglu

and Stiglitz (2023), Jackson and Pernoud (2024), and Shu (2024) show that correlation

of risks, expectation of bailouts, and correlated payoff structures can lead to a collective
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increase in risk-taking, resulting in systemic risk-shifting by agents in a financial network.

Our results are closely related to this literature, demonstrating how endogenous risk-taking

behavior can be exacerbated by an increase in collateral reuse.

In conclusion, we find that a greater degree of collateral reuse can harm financial stability

when agents’ portfolio choices are endogenously determined. In particular, it decreases the

resiliency of the financial system as social welfare in the worst equilibrium falls due to greater

liquidations of agents’ investment projects. A natural empirical prediction from this result

is the following: Holding all else equal, a higher degree of collateral reuse leads to fewer but

more severe crisis episodes.

Corollary 2 (Empirical Prediction 2). Holding all else equal, a higher degree of collateral

reuse leads to a lower likelihood of crisis but a greater severity of crisis (lower social surplus)

when it occurs.

6. Extensions

In this section, we discuss the possible extensions of our baseline model and robustness

of our main results.

First, we can relax the assumption on the liquidation inefficiency of ζ → 0, i.e., a trivial

liquidation of long-term projects. Then, agents can receive non-trivial liquidation proceeds,

i.e., ζ > 0, from partial liquidations of their long-term projects to pay their debt obligations.

As Proposition 6 in Chang and Chuan (2024) show, all the main results on the pattern of

contagion hold if the size of liquidity shocks is sufficiently large. Therefore, the results in

this paper hold when we assume ϵ > n (e0 + ζξ).

Second, we can allow multiple agents to receive liquidity shocks simultaneously. As shown

in the appendix of Chang and Chuan (2024), the main insights of the contagion model hold

when liquidity shocks affect multiple agents simultaneously. Therefore, the results in this

paper hold if the number of agents receiving liquidity shocks (ν) is greater than or equal to
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1 where ϵ > ne0/ν.

Third, we can relax the assumption on homogeneity of agent size. In particular, we can

introduce a scale factor σi > 0 for all i ∈ N . Agent i’s liabilities become di = σid and

ϵi = σiϵ if ωi = 1, while agent i’s assets become ei = σie0, hi = σih0, and ξi = σiξ.

We define a size-adjusted harmonic distance similar to that of Acemoglu et al. (2015).

Definition 3. The weighted harmonic distance from agent i to agent j is

µ̂ij = σi +
∑
k∈N

(
dik
d

)
µ̂kj, (19)

with the convention that µ̂ii = 0 for all i.

Under this setup, the results similar to those of Proposition 3 hold.

Proposition 9. Suppose that agent j is under a liquidity shock such that ϵ >

((e0 + h0s)/σj)
∑

i∈N σi. Then, the following hold:

1. Agent j defaults on its liquidity shock.

2. Agent i ̸= j defaults if and only if µ̂ij < σiµ
∗(p) for a given equilibrium price p.

Proposition 9 implies that the pattern of contagion remains the same even with the

existence of size heterogeneity. All the derivations and conditions in this paper continue

to hold as long as agent i’s balance sheet is scaled by σi for each i ∈ N (and properly

multiplying the matrix representations in the proofs with the appropriate σD vector for the

set of defaulting agents D).

We briefly discuss extensions that may not retain the main findings in our baseline model.

Relaxing the assumption on sufficiently high interconnectedness (i.e., µij < µ∗(0) for any

i, j ∈ N), changes the possible set of equilibria. In particular, if a debt network has two

(or more) components that have weak interconnections between them, then the minimum

equilibrium with p = 0 may not exist. For concreteness, suppose that network D has a subset
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S ⊂ N such that max {dij, dji} ≤ δd for any i ∈ S, j /∈ S, and for a small δ > 0. Suppose

that agent j ∈ N\S = SC is hit by a large liquidity shock. All agents in SC are subject

to default, since they are the most exposed to agent j, but agents in S remain solvent, if

δ is sufficiently small, i.e., µij > µ∗(0) = d/e0 for i ∈ S. In such cases, the three unique

equilibria result in Proposition 4 does not hold, as there is no minimum equilibrium with

p = 0. Therefore, we interpret the results in this paper as being most relevant to sufficiently

interconnected financial systems as opposed to fragmented ones.

Allowing for heterogeneous collateral ratios is challenging because the difference in pay-

ments depends on each individual collateral ratios at different price levels. Thus, there would

be many price regions of contagion depending on the shock size and network structure. How-

ever, the model with heterogeneous collateral ratios can be solved numerically and could be

very useful when combined with empirical data. We leave this direction of extension for

future work.

Finally, we take the network structure (C,D) as exogenously given, as do many papers

in the financial networks literature. This is mainly for tractability, as endogenizing financial

networks, which have non-linear interactions due to defaults, can quickly become intractable

as we add more features. Therefore, typical endogenous financial network models require

many simplifying assumptions that may hamper comprehensive analysis of contagion in the

network itself (e.g., Chang (2021)). That said, if network formation was endogenous, our

results on increased systemic risk due to endogenous risk-taking behavior would be further

amplified through the network formation incentives, as highlighted by Erol and Vohra (2022).

7. Conclusion

We developed a model of contagion through both debt and collateral market with multiple

equilibria. We find that there are three very distinct equilibria for a given network, and the

intermediate equilibrium price is decreasing in the degree of collateral reuse. We further
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extend the model to incorporate equilibrium selection through either global games or best

response dynamics to analyze the implications of multiple equilibria and their changing

values with respect to collateral reuse. We find that the likelihood of the worst (minimum)

equilibrium is decreasing in the degree of collateral reuse. However, if we endogenize the

agents’ risk-taking choices, then an increase in collateral reuse increases the riskiness of

agents’ investments, leading to more severe crises with lower social surplus. Therefore, a

higher degree of collateral reuse leads to fewer but more severe crises.

Overall, our results have three important policy implications. First, the degree of collat-

eral reuse alone is not a concern for financial stability. Indeed, collateral reuse can alter other

relevant factors that may ultimately influence financial stability, such as market liquidity and

rate spreads due to safe asset scarcity. However, we find that the direct relationship between

collateral reuse and financial stability as a result of self-fulfilling price drops and defaults is

positive. Second, the degree of collateral reuse can still negatively impact financial stability

through its indirect effects on agents’ risk-taking choices, which become concerning in tail

events. Therefore, monitoring the degree of collateral reuse is still important, as higher de-

grees of collateral reuse can be followed by greater leverage and other risk-taking behaviors

of market participants. Third, supporting the price and liquidity of the collateral asset can

be a critical intervention by a central bank, as such an intervention can significantly improve

social surplus by eliminating a crisis of contagion through both debt and collateral price.

Therefore, a policy intervention as a ‘dealer of last resort’ or a standing facility for repos and

other SFTs can be an important policy tool, especially when collateral reuse is prevalent.
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Appendix (for online publication only)

A. Preliminaries

A.1. Matrix Representations

For a given network D, without loss of generality, suppose that agent 1 received the

liquidity shock. Denote the set of defaulting agents (defaulting set) as D and the set of

surviving agents (solvency set) as S. Denote µd1 as the |D|× 1 vector of harmonic distances

from agents in D to agent 1, and µs1 as the |S|× 1 vector of harmonic distances from agents

in S to agent 1. First, note that the weights following the weighting rule do not change with

the price p under the uniform collateral ratio because

qij(p) =
dij − dijcp∑

k∈N dkj − dkjcp
=

dij(1− cp)∑
k∈N dkj(1− cp)

=
dij
d
.

Hence, we can represent the harmonic distance in (10) from agent i to agent j as

µij = 1 +
∑
k ̸=j

qikµkj. (20)

Using expression (20), the vectors of harmonic distances can be represented as

µd1 = 1+Qddµd1 +Qdsµs1, (21)

µs1 = 1+Qsdµd1 +Qssµs1, (22)

where Qdd, Qds, Qsd, Qss are matrices of weights of liabilities for agents within D, from S to

D, from D to S, and within S, respectively. The vector of total payments for defaulting

1



agents xd is determined as

xd = Qddxd + (d− cdp)Qds1d + (e0 + h0p)1d

for a given price p, which can be solved as

xd = (I −Qdd)
−1 [(d− cdp)Qds1d + (e0 + h0p)1d] , (23)

because I − Qdd is an M-matrix, which is invertible (Chang and Chuan, 2024). The vector

of net wealth of non-defaulting agents is

ms ≡ Qsdxd +Qss(d− cdp)1s + (e0 + h0p)1s − (d− cdp)1s,

where we use the fact that non-defaulting agents are paying their debt in full as d − cdp.

Plugging the payments in (23) into the net wealth vector implies

ms = (e0 + h0p)[1s +Qsd (I −Qdd)
−1
1d]− (d− cdp)

[
I −Qss −Qsd (I −Qdd)

−1Qds

]
1s.

(24)

Summing up the net wealth over the surviving agents implies

1′
s

[
I −Qss −Qsd (I −Qdd)

−1Qds

]
1s = |S| −

∑
∀i,j∈S
i ̸=j

qij − 1′
sQsd(I −Qdd)

−1Qds1s

=⇒ 1′
sms = |S|(e0 + h0p)− |S|(d− cdp) + (d− cdp)

∑
∀i,j∈S
i ̸=j

qij

+ (e0 + h0p)1
′
sQsd(I −Qdd)

−11d + (d− cdp)1′
sQsd(I −Qdd)

−1Qds1s

= |S|(e0 + h0p)− |S|(d− cdp) + (d− cdp)
∑
∀i,j∈S
i ̸=j

qij

+ 1′
sQsd(I −Qdd)

−1[(e0 + h0p)1d + (d− cdp)Qds1s]. (25)
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Because Q is doubly stochastic and its submatrices are doubly substochastic,

1′
dQdd + 1′

sQsd = 1′
d −Q1d

=⇒ 1′
sQsd = 1′

d(I −Qdd)−Q1d. (26)

Plugging (26) into (25) implies

1′
sms = |S|(e0 + h0p)− |S|(d− cdp) + (d− cdp)

∑
∀i,j∈S
i ̸=j

qij + 1′
d[(e0 + h0p)1d + (d− cdp)Qds1s]

−Q1d(I −Qdd)
−1[(e0 + h0p)1d + (d− cdp)Qds1s]

= |S|(e0 + h0p)− |S|(d− cdp) + (d− cdp)
∑
∀i,j∈S
i ̸=j

qij + |D|(e0 + h0p) + (d− cdp)
∑

i∈D,j∈S

qij

−Q1d(I −Qdd)
−1[(e0 + h0p)1d + (d− cdp)Qds1s]

= (n− 1)(e0 + h0p) + (d− cdp)(−|S|+
∑

i∈D∪S,j∈S

qij)− Q1d(I−Qdd)
−1[(e0+h0p)1d+(d−cdp)Qds1s]

= (n− 1)(e0 + h0p) + (d− cdp)(−|S|+
∑
j∈S

(1− q1j))− Q1d(I−Qdd)
−1[(e0+h0p)1d+(d−cdp)Qds1s]

= (n− 1)(e0 + h0p) + (d− cdp)(−|S|+ |S| −
∑
j∈S

q1j)− Q1d(I−Qdd)
−1[(e0+h0p)1d+(d−cdp)Qds1s].

Thus, the aggregate net wealth can be represented as

1′
sms = (n− 1)(e0 + h0p)− (d− cdp)

∑
j∈S

q1j −Q1d(I −Qdd)
−1[(e0 + h0p)1d + (d− cdp)Qds1s],

(27)

which essentially determines the market clearing condition

1′ms = nh0p, (28)

which holds for the case with p < s. Denote the aggregate net wealth less of the aggregate
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asset value as a function of p, so the market clearing condition is

F(c, p;D) ≡ (n−1)(e0+h0p)−(d−cdp)
∑

j∈S q1j − Q1d(I−Qdd)
−1[(e0+h0p)1d+(d−cdp)Qds1s] − nh0p = 0.

(29)

Now consider the solvency conditions for the surviving agents. From Proposition 3, we

know that for a given equilibrium price p, any agent i such that

µi1 < µ∗(p) =
d− cdp

e0 + h0p
(30)

default.

Therefore, the equilibrium price will be determined by the simplified market clearing

condition (29) for a given set of defaulting agents D, and the market clearing price p will

determine the set of defaulting agents D by (30). The equilibrium will be the fixed point of

(D, p) that satisfies the market clearing condition and the solvency condition simultaneously.

A.2. Useful Lemma

The following lemma is useful in proofs for several results in the main text.

Lemma 4 (More Default More Price Decline). For a fixed set of defaulting agents D1, define

p1 that satisfies F(c, p1;D1) = 0. Suppose that under p1, the set of defaulting agents increases

to D2 such that D1 ⊂ D2 and D2 ̸⊂ D1. Let p2 be the price that satisfies F(c, p2;D2) = 0 for

the new defaulting set D2. Then, p2 < p1.

Proof of Lemma 4. By rearranging the terms of F(c, p;D), we can decompose the terms

into coefficients of p and the rest of the constants as

F(c, p;D1) =(n− 1)e0 −
∑
j∈S1

q1jd−Q1d1(I −Qd1d1)
−1[e01d1 + dQd1s11s1 ]

+ (n− 1)h0p+ cd
∑
j∈S1

q1jp+Q1d1(I −Qd1d1)
−1[cdQd1s11s1 − h01d1 ]p− nh0p.
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First, note that each entry of (I −Qd1d1)
−1Qd1s11s1 is less than 1, because otherwise the

entry with 1 or higher would have had enough net wealth through

[
(I −Qd1d1)

−1 (e0 + h0p)1d1 + (d− cdp) (I −Qd1d1)
−1Qd1s11s1

]
j
> d− cdp,

for agent j ∈ D1 and agent j would not have defaulted. In other words,

(I −Qd1d1)
−1 [(e0 + h0p)1d1 + (d− cdp)Qd1s11s1 ] < (d− cdp)1d1 ,

because all agents in D1 are defaulting.

Next we show that the coefficients of p is decreasing in the number of defaulting agents.

Let C ⊂ D2, C ∩ D1 = ∅, and D2 = D1 ∪ C.

The difference between the coefficients on p in F(c, p;D1) and F(c, p;D2) is

cd(
∑
j∈S1

q1j −
∑
j∈S2

q1j) +Q1d1(I −Qd1d1)
−1[cdQd1s11s1 − h01d1 ]

−Q1d2(I −Qd2d2)
−1[cdQd2s21d2 − h01d2 ]

= cd
∑
j∈C

q1j +Q1d1(I −Qd1d1)
−1[cdQd1s11s1 − h01d1 ]−Q1d2(I −Qd2d2)

−1[cdQd2s21s2 − h01d2 ].

(31)

Note that (I − Qd1d1)
−1[cdQd1s11s1 − h01d1 ] in the second term in equation (31) can be

represented as a vector y(D1) with entries

yi(D1) =

[∑
j∈S1

qijcd− h0 +
∑
j∈D1

qijyj(D1)

]
.

First, note that yi(D1) is increasing in
∑

j∈S1
qijcd− h0. When all agents in C default then,∑

j∈S1\C qijcd−h0 ≤
∑

j∈S1
qijcd−h0. Second, since (I −Qdd)

−1Qds1s < 1s, for any general
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default set and solvency set, so yk(D2) < cd for any k ∈ D2. Hence for any i ∈ D1,

yi(D2) < yi(D1).

Therefore,

cd
∑
j∈C

q1j +Q1d1(I −Qd1d1)
−1[cdQd1s11s1 − h01d1 ]−Q1d2(I −Qd2d2)

−1[cdQd2s21s2 − h01d2 ]

= cd
∑
j∈C

q1j +Q1d1y(D1)−Q1d2y(D2)

= cd
∑
j∈C

q1j(1− yj(D2)) +
∑
i∈D1

q1i(yi(D1)− yi(D2)) > 0,

so the slope of the market clearing condition with D2 is smaller than that with D1.

Now suppose that agent j ∈ C defaults when the asset price is p1, i.e., mj(p1) < 0.

Then, by continuity, there exists p̃j such that mj(p̃j) = 0 and p̃j > p1. Now consider

F(c, p;D1∪{j}). Because F(c, p;D1∪{j}) has lower coefficients of p than F(c, p;D1) by the

previous argument (i.e., considering C = {j}), and the value at p̃j is the same for the two

functions, i.e., F(c, p̃j;D1 ∪ {j}) = F(c, p̃j;D1), the price p has to decline further to reach

zero, i.e., for p∗ such that F(c, p∗;D1 ∪ {j}) = 0, p∗ < p1. The same argument applies to

any other agent i ∈ C. Hence, p2 < p1.
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B. Agent’s Optimization Problem at Date 1 and Its Solution

At t = 1, agent j would like to maximize long-term profit, πj at t = 2, which is composed

of cash holdings, asset holdings multiplied by the asset payoff, and the payoff from the long-

term project net of the liquidation amount. The decision variables are how much cash (e)

and assets (h) to hold based on j’s belief on the asset payoff θj, which is θj = s for all j ∈ N

in the baseline case. All of these decisions are subject to wealth as well as paying off the

inter-agent liabilities and liquidity shock, while taking the payments from other agents as

given. Hence, agent j solves for the following optimization problem:

max
e,h

πj = e+ hθj + ξ1 {aj(p) > bj(p)} (32)

s.t. e+ hp ≤ [aj(p)− bj(p)]
+

e ≥ 0, h ≥ 0,

where the first constraint is the budget constraint, and the second and the third are non-

negativity constraints for cash and assets, respectively. Note that the long-term investment

payoff is realized only if agent j is solvent, i.e., aj(p) > bj(p), because it will be completely

liquidated if agent j defaults due to the assumption of ζ → 0.

There are three possible cases. First, suppose that agent j’s available budget is zero as

aj(p) − bj ≤ 0. Then, all the constraints are binding, and agent j’s portfolio is forced to

be (e, h) = (0, 0). Suppose that agent j has some budget available for the rest of the cases.

Second, suppose that the asset price is p = θj. Then, agent j is indifferent between holding

more cash and holding more assets. Hence, j will divide the budget into any arbitrary

combination of e and h. Third, suppose that the asset price is p < θj. Then, agent j would

prefer to buy more assets than cash because the return of buying an asset is θj/p, which is

greater than the cash return, 1. We present the full solution in the remainder of this section.
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The first-order conditions (FOCs) of the optimization problem are

∂e : 1− λw + λe = 0,

∂h : θj − λwp+ λh = 0,

where λw, λe, and λh are the Lagrangian multipliers for the budget constraint, non-negativity

constraint for e, and non-negativity constraint for h, respectively.

Complementary slackness conditions are

λee = 0,

λhh = 0,

whereas the budget constraint is always binding at the optimum.

Case 1. If aj(p)− bj(p) ≤ 0. The budget constraint becomes

e+ hp = 0,

and by e, h ≥ 0 and p ≥ 0, (e, h) = (0, 0).

Case 2. Suppose aj(p)− bj(p) > 0.

Case 2.1. Suppose that e > 0, h > 0. FOCs for e and h imply

λw = 1,

λwp = θj,

and combining the two implies that p = θj. Therefore, the case is optimal only in the case

of p = θj.
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Case 2.2. Suppose that e > 0, h = 0. FOCs imply

λw = 1,

λh = λwp− θj = p− θj,

implying λh > 0 is possible only if p > θj. Thus, agent j will sell all the asset and hold only

cash if p > θj.

Case 2.3. Suppose that e = 0, h > 0. FOCs imply

λw =
θj
p
,

λe =
θj
p
− 1 > 0,

which hold only if p < θj. Therefore, this case is possible only if p < θj.

To summarize, agent j will be indifferent between cash and asset holdings only if p = θj;

buy assets using all the available budget if p < θj; and sell all the assets and hold only cash

if p > θj. However, if agent j does not have any available cash, i.e., has non-positive net

wealth, then the agent trivially holds zero cash and zero assets.
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C. Omitted Proofs

C.1. Social Surplus

Proof of Lemma 1. Lemma 1 in Chang and Chuan (2024) shows that the social surplus

of the economy is

U =
∑
j∈N

(ej + hjs+ ξ)− (1− ζ)
∑
i∈N

li. (33)

The result automatically follows from plugging ζ = 0 into (33).

C.2. Existence

Proof of Proposition 1. See the appendix of Chang and Chuan (2024).

C.3. Collateral Thresholds

Proof of Proposition 2. The first statement follows from statement 1 in Proposition 2

of Chang and Chuan (2024). The second statement follows from statement 2 in Proposition

2 of Chang and Chuan (2024).

C.4. Multiple Equilibria

Proof of Proposition 3. See the appendix of Chang and Chuan (2024).

Proof of Proposition 4. The maximum equilibrium of p = s with a single default exists

by Proposition 2, because c ≥ c(s, n). The minimum equilibrium of p = 0, with all agents

defaulting, exists by the assumption µij < µ∗(0) for all i, j ∈ N , and by Proposition 3.

Therefore, the aggregate net wealth, W (p) ≡
∑

j∈N [mj(p)]
+, is W (s) ≥ nh0s for the

maximum equilibrium and W (0) = 0 for the minimum equilibrium. By Lemma 4 of Chang
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and Chuan (2024) the aggregate net wealth is strictly increasing in p. Also, note that

W (p) is continuous in p. Therefore, there exists at least one point p∗ such that the market

clearing condition holds in equality, i.e., W (p∗) = nh0p
∗. This p∗ is different from s unless

W (s) = nh0s, which is non-generic.

Finally, we show that such p∗ is unique. By Lemma 4, a default induced by a price decline

further decreases the market clearing price. Thus, ∂W
∂p

is increasing in p, i.e., the aggregate

net wealth is piece-wise linear, continuous, and convex in p. Now suppose the contrary that

there exist two different prices p∗ and p̃ with p∗ > p̃ and both p∗ and p̃ satisfy the market

clearing condition with equality, i.e.,

W (p∗) = nh0p
∗ (34)

W (p̃) = nh0p̃. (35)

If the two equilibria with p∗ and p̃ have the same defaulting set D, then the market clearing

functions will be the same for both F(c, p∗;D) = F(c, p̃;D), implying that there should

be unique price that clears the market, which contradicts the initial assumption p∗ > p̃.

Therefore, the two equilibria should have different defaulting sets, D∗ ⊂ D̃.

However, from the proof of Lemma 4, the slope of the aggregate net wealthW (p) decreases

as the defaulting set increases. The fact that both (34) and (35) hold implies that the average

slope of the aggregate net wealthW (p) from p∗ to p̃ is nh0. The slope will decline even further

as p goes to zero, as more agents will default (or all agents default at p = 0), resulting in

W (p̃)−W (0) < nh0p̃

=⇒ W (0) > 0.

Then, there is no equilibrium with p = 0, which is a contradiction. Hence, there exists only

one intermediate equilibrium with price 0 < p∗ < s such that the cash-in-the-market price

condition is satisfied with equality.
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C.5. Collateral Reuse and Changes in Contagion

Proof of Proposition 5. We prove this result in three steps. First, we show that the

intermediate equilibrium price p is decreasing in c if there is no additional default. Second,

we show that number of defaulting agents weakly increases in c. Finally, we claim that the

additional defaults will decrease the equilibrium price further by Lemma 4.

Step 1. First, we show that the equilibrium price p in the intermediate equilibrium is

decreasing in c if the set of defaulting agents remains the same.

Fix the set of defaulting agents as D. Recall that the market clearing condition can be

represented as the market clearing condition function derived in (29),

F(c, p;D) ≡ (n−1)(e0+h0p)−(d−cdp)
∑

j∈S q1j − Q1d(I−Qdd)
−1[(e0+h0p)1d+(d−cdp)Qds1s] − nh0p = 0.

By the implicit function theorem,

∆p

∆c
= −

∂F(c, p;D)

∂c
∂F(c, p;D)

∂p

= −
dp
∑
j∈S

q1j +Q1d (I −Qdd)
−1Qds1sdp

cd
∑
j∈S

q1j −Q1d (I −Qdd)
−1 h01d +Q1d (I −Qdd)

−1Qds1scd− h0
< 0, (36)

where the last inequality comes from the fact that the denominator is positive by cd > h0,

cd ≥ c(s, n)d =
d− (n− 1)e0 + h0s

s

=
d− (n− 1)e0

s
+ h0 > h0,

where the last inequality holds due to d > (n − 1)e0. Therefore, p is decreasing in c for a

fixed set of defaulting agents.

Step 2. Second, we show that the number of defaults is (weakly) increasing in c in the
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intermediate equilibrium.

Recall that agent i is defaulting when

µi1 < µ∗(p) =
d− cdp

e0 + h0p
.

Then, the threshold harmonic distance changes with respect to increase in c as

∂µ∗

∂c
=

(
−dp− cd

∆p

∆c

)
(e0 + h0p)− h0

∆p

∆c
(d− cdp)

((e0 + h0)p)
2

=

(
−dp− cd

∆p

∆c

)
e0 − dph0p− h0

∆p

∆c
d

((e0 + h0)p)
2 . (37)

To show that (37) is positive, we calculate a lower bound for −∆p
∆c

, which is from (36),

−∆p

∆c
≥
dp

(∑
j∈S

q1j +Q1d (I −Qdd)
−1Qds1s

)

cd

(∑
j∈S

q1j +Q1d (I −Qdd)
−1Qds1s

) =
p

c
.

Plugging this lower bound into the numerator of (37) implies

(−dp− cd
∆p

∆c
)e0 − dp2h0 − h0

∆p

∆c
d ≥ −dp2h0 + h0d

p

c
= dph0(

1

c
− p)

Because c ≤ c̄ = 1
s
and p ≤ s, 1

c
− p ≥ 0, implying dph0(

1
c
− p) ≥ 0. Therefore, ∂µ∗

∂c
> 0,

i.e., the required threshold harmonic distance is increasing in c, implying more agents will

default as c increases by Proposition 3.

Step 3. By Lemma 4, an increase in the number of defaults in Step 2 will decrease the

equilibrium asset price p even further. Therefore, an increase in c will decrease the interme-

diate equilibrium price even without triggering more defaults by Step 1, and can decrease the

intermediate equilibrium price even further due to further (possible) increase in defaults by
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Step 2. Hence, the intermediate equilibrium price p is decreasing in the degree of collateral

reuse c.

C.6. Equilibrium Selection

Proof of Lemma 2. Recall that from (13)

ϕj(p) = min

{
θ + ψ − θ∗

2ψ
[hjp−mj(p)]

+ +
θ∗ − (θ − ψ)

2ψ
hjp, hjp

}

Similarly, the demand side from (9) becomes (14), which is

∑
j∈N

θ + ψ − θ∗

2ψ
[mj(p)− hjp]

+ ,

as only the reluctant sellers would participate the market as buyers. Thus, plugging (13)

and (14) into the market clearing condition implies

∑
j∈N

θ + ψ − θ∗

2ψ
[mj(p)− hjp]

+

≥
∑

j∈D(p)

hjp+
θ∗ − (θ − ψ)

2ψ

∑
j /∈D(p)

hjp+
θ + ψ − θ∗

2ψ

∑
j /∈D(p)

[hjp−mj(p)]
+

=⇒
∑

j /∈D(p)

θ + ψ − θ∗

2ψ
(mj(p)− hjp) ≥

∑
j∈D(p)

hjp+
θ∗ − (θ − ψ)

2ψ

∑
j /∈D(p)

hjp

=⇒
∑
j∈N

θ + ψ − θ∗

2ψ
[mj(p)]

+ ≥
∑

j∈D(p)

hjp+

(
θ∗ − (θ − ψ)

2ψ
+
θ + ψ − θ∗

2ψ

) ∑
j /∈D(p)

hjp

=⇒ θ + ψ − θ∗

2ψ

∑
j∈N

[mj(p)]
+ ≥ nh0p. (38)

By the definition of the threshold value of θi for the marginal buyer, θ∗ determines the asset

price, so (38) becomes

θ + ψ − θ∗

2ψ

∑
j∈N

[mj(θ
∗)]+ ≥ nh0θ

∗. (39)
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If θ∗ ≥ θ−ψ ≥ p∗(c,D), then
∑

j∈N [mj(θ
∗)]+ > nh0θ

∗ for any θ∗ by the proof of Proposition 4

and Lemma 4. Moreover,
θ + ψ − θ∗

2ψ
is decreasing in θ∗ and its upper bound is

θ + ψ − θ∗

2ψ
≥

θ + ψ − (θ − ψ)

2ψ
= 1. Therefore, the market clearing condition (39) can be satisfied at

p = θ∗ = θ − ψ, and thus, an equilibrium.

Finally, for the second statement, recall that from the proof of Proposition 4, the ag-

gregate net wealth is less than the value of the aggregate supply for any p < p∗(c,D). If

θ∗ < p∗(c,D) for any θ∗ ∈ [θ− ψ, θ + ψ], then the only equilibrium is p = 0 and every agent

defaults as in the minimum equilibrium in Proposition 4.

Proof of Proposition 6.

Since θ∗ ∈ [θ − ψ, θ + ψ], ψ → 0 implies θ∗ = θ. From Lemma 2, θ∗ = θ − ψ → θ and

p = θ is an equilibrium with a positive aggregate net wealth. Therefore, θ∗ = θ is the unique

equilibrium.

From the proof of Proposition 4 and Lemma 4,

W (p) ≥ nh0p,

where W (p) is the aggregate net wealth, for any p ≥ p∗(c,D). Hence, substituting any p

with θ ≥ p∗(c,D), which is the upper bound of the asset price, implies

W (θ) ≥ nh0θ,

which satisfies the second case of the market clearing condition (9). In contrast, by the same

arguments,

W (p) < nh0p,

for any 0 < p < p∗(c,D). Hence, the only price that satisfies the market clearing condition

is p = 0 for any θ < p∗(c,D).

15



For the last statement, it is suffice to calculate the changes in the likelihood of θ being

less than p∗(c,D) by the first statement. Recall that the likelihood of θ ∈ [0, p∗(c,D)) is

p∗(c,D)

θ̄
. By Proposition 5, ∂p∗(c,D)/∂c < 0, and trivially

∂p∗(c,D)/θ̄

∂c
< 0.

Proof of Proposition 7. From the proof of Proposition 4 and Lemma 4, as well as the

argument in the main body, any realization of the initial RB that leads to the Walrasian

auctioneer’s price of p < p∗(c,D) will lead to a BRD path to the minimum equilibrium

with p = 0 where all agents default. Similarly, any initial RB that leads to p > p∗(c,D)

will lead to a BRD path to the maximum equilibrium with p = s. Since the size of the

range of κ is increasing with greater p∗(c,D), more states in Θ will lead to the realization

of RB that leads to the minimum equilibrium. Therefore, the likelihood of realization of

the minimum equilibrium is proportional to p∗(c,D). The same argument holds for the

maximum equilibrium. Finally, by Proposition 5, the second statement holds.

C.7. Endogenous Risk-Taking

Proof of Lemma 3. Because K ′(ξ) is increasing in ξ, it is enough to show that the

right-hand side of (18) is decreasing in p∗(c,D), which is decreasing in c by Propositions 5

and 7. Differentiating the right-hand side of (18) with respect to p∗(c,D) implies

−n− 1

n

(
1− 1

R

)[
p∗(c,D) + (s− p∗(c,D))

1

n

]
− (s− p∗(c,D))

n− 1

n

(
1− 1

R

)
n− 1

n[
p∗(c,D) + (s− p∗(c,D))

1

n

]2 < 0,

as long as the resulting ξ and e0 values satisfy the parametric assumptions in the baseline

model, so the contagion pattern remains the same.

Proof of Proposition 8. The result follows from Lemma 3 and Propositions 6 and 7.
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C.8. Extensions

Proof of Proposition 9.

1. Suppose the contrary that agent j can pay its liquidity shock in full. Consider the best-

case scenario in which all agents pay their debt in full. Then, for a given equilibrium price

p

σi (e0 + h0p) +
∑
k∈N

xik(p) ≥ σiωiϵ+
∑
k∈N

xki(p)

holds for all i ∈ N . However, summing over all i ∈ N yields

(e0 + h0p)
∑
i∈N

σi ≥ σjϵ,

which contradicts ϵ > ((e0 + h0s)/σj)
∑

i∈N σi ≥ ((e0 + h0p)/σj)
∑

i∈N σi. Therefore, j de-

faults on its payment to its senior liability, i.e., the liquidity shock.

2. By definition, agent i defaults on its scaled liabilities if xi(p) < σi(d − cdp) for a given

equilibrium price p, for each i ∈ N , where xi(p) ≡
∑

k∈N xki(p). The payment rule implies

that

xi(p) = σi(e0 + h0p) +
∑
k∈N

qikxk(p).

Thus, (19) implies that xi(p) = (e0 + h0p)µ̂ij, because

µ̂ij = σi +
∑
k ̸=j

qikµ̂kj

⇐⇒ µ̂ij(e0 + h0p) = σi(e0 + h0p) +
∑
k∈N

qikµ̂kj(e0 + h0p).

Then, agent i defaults if and only if xi(p) < σi(d − cdp), which is equivalent to µ̂ij <

σi
d− cdp

e0 + h0p
= σiµ

∗(p).
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