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Abstract
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likelihood of cyberattacks. We find that larger establishments and establishments
of publicly traded companies are more likely targets.
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1 Introduction

The increased frequency and severity of cyberattacks has recently attracted considerable

attention. Despite that cybersecurity threats consistently ranked among the top 10

concerns of business, government, and academic leaders, the distribution of cyberattacks

across institutions is, at best, imperfectly understood, as public data are scant and

mostly anecdotal.1 This paper partially fills this gap by using detailed information on

cyberattacks and establishments in the U.S. and studying which types of establishments

are more likely to be targeted.

Ex-ante, it is not obvious which institutions are more likely to become victims of

cyberattacks. This is because, from a theoretical perspective, the equilibrium distribution

of cyberattacks depends on hackers’ motivation and institutions’ response, both of which

are difficult to observe.2 To understand this observation more clearly, consider a simple

economy wherein hackers are purely financially motivated. And assume hackers target

larger institutions with the expectation of obtaining higher ransoms. Considering this

strategy, larger institutions would increase their investments in cybersecurity, making it

more difficult to implement successful attacks. Thus, on expectation, targeting larger

institutions may become less profitable. A similar idea applies to smaller institutions.

Here, however, expected profits from successful attacks might be smaller, as smaller

institutions might be unable to pay high ransoms. Consequently, hackers might have less

incentives to target such institutions to begin with. Due to these forces, hackers might

target institutions at random. As a result, the equilibrium distribution of cyberattacks

might closely resemble the size distribution of institutions within the economy.3

From an empirical perspective, scant data on both cyberattacks and private

institutions poses a significant challenge. Besides the lack of public data on cyberattacks,

it is difficult to find detailed information on private companies, many of which are
1The Global Risk Report of the World Economic Forum consistently reports cyberse-

curity threats among the top 10 concerns among world economic leaders. For more
details, see https://www.weforum.org/publications/series/global-risks-report/. The Cybersecurity
and Financial System Resilience Report of the Federal Reserve Board provides a descriptive
account of policymakers’ concerns about the potential system-wide repercussions of cyberattacks
and measures taken to strengthen cybersecurity within the financial sector. For more
details, see https://www.federalreserve.gov/publications/cybersecurity-and-financial-system-resilience-
report.htm. Kashyap and Wetherilt (2019) emphasize the micro and macroprudential challenges posed
by cyberattacks in modern economies.

2See Ablon (2018) for a description of hackers’ motivations and their different types.
3See Dziubinski and Goyal (2013, 2017), Block, Dutta, and Dziubinski (2020) and Block, Chatterjee,

and Dutta (2022) for equilibrium models of attack and defense within a network framework.
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themselves victims of cyberattacks. To tackle this challenge, we combine a comprehensive

data set on cyberattacks with the Walls & Associates (2020) National Establishment

Time Series (NETS) data set to provide a representative description of the anatomy of

cyberattacks across U.S. institutions.

With these data in hand—which account for about 2.5 million observations at the

establishment-year level—we show that establishments of publicly traded companies are

2.68 times more likely to be targeted than establishments of nonpublic institutions—

which, within our sample, cover non-publicly traded companies, non-profits, and

government institutions. When compared with the average establishment in our sample,

establishments generating 100 million dollars more in annual sales are 9.52% more likely

to be targeted. And establishments with 100 more employees are 0.90% more likely to be

victims of cyberattacks. Results at the institution level are even more striking. Publicly

traded companies are 9.32 times more likely to be targeted than nonpublic institutions.

And when compared with the average institution, institutions with 100 more employees

are 2.12% more likely to be targeted. Our results control for various fixed-effects and are

robust to variation in regression specifications and matching methodology.

Our findings are consistent with the idea that publicly traded companies and larger

institutions are more likely targets of cyberattacks. Our analysis complements previous

work examining cyber risk, including Jamilov, Rey, and Tahoun (2021), Kamiya,

Kang, Kim, Milidonis, and Stulz (2021), and Florackis, Louca, Michaely, and Weber

(2023). Although our paper and this literature share an emphasis on the distribution

of cyberattacks, we provide a more granular picture of the anatomy of hacks across

the whole distribution of U.S. establishments and not just publicly traded corporations.

Our analysis also complements a literature examining the determinants of cyber

risk—see, Aldasoro, Gambacorta, Giudici, and Leach (2020). Here, we provide

a more detailed account of hacks across both public and private U.S. companies.

Our results also complement a literature that emphasizes the potential system-wide

implications of cyberattacks, including Duffie and Younger (2019), Kashyap and Wetherilt

(2019), Kotidis and Schreft (2022), and Eisenbach, Kovner, and Lee (2022).
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2 Data and Summary Statistics

To identify cyberattacks we use the Privacy Rights Clearinghouse (PRC) Data Breaches

database—a collection of privacy breaches as reported by state Attorney Generals and

the U.S. Department of Health and Human Services. Although these data contain over

9,000 observations spanning from 2005 through 2019, only a subsample of them affects

U.S. institutions.4 Because we are primarily interested in hacks—defined as breaches

caused by an outside party or malware—affecting U.S. institutions, our initial sample

contains 2,508 observations from 2005 to 2019. Besides institutions’ names, observations

in PRC provide the geographical location (city and state) of hacked institutions as well

as the year of the hack.

Because many observations in PRC refer to non-publicly traded companies and

government institutions, we resort to NETS—a representative inventory of U.S. businesses

with granular information for almost 80 million (private and public) establishments—to

obtain characteristics of hacked institutions within our initial sample.5 Our merging

methodology matches observations in our initial sample with NETS establishments by

name and location. We purposely generate our match at the establishment-year level to

exploit potential variation across establishments within institutions. This mapping also

helps us tackle concerns regarding over-representation of large publicly traded companies

accounting for a multitude of establishments across the U.S.

Out of the 2,508 initial observations, our matching process generates an intermediate

sample of 1,220 establishment-year observations for which we have detailed business

information from 2005 to 2019.6 Figure 1 depicts the geographical distribution of

cyberattacks within our intermediate sample. Dots represent the location of hacked
4Because public information about cyber incidents is scant, the PRC data have been frequently used

as a good approximation of cyber incidents in the U.S.; see Jamilov et al. (2021), Kamiya et al. (2021),
and Florackis et al. (2023), among many others.

5Barnatchez, Crane, and Decker (2017) find that NETS can be a useful private-sector source of
business microdata—relative to official U.S. business universe data sources—for studying business activity
in granularity. Importantly, NETS can be accessed without extensive proposal, security clearance
processes, and the need to be accessed inside of secure government facilities, potentially providing an
efficient way to conduct research when business-level microdata is needed.

6Out of the 2508 observations in PRC, 19 observations lack any type of location data, 24 observations
do not have state information, and 686 observations do not have city information. And 28% of
observations have at least one piece of location data missing where only 1817 observations have name, city,
and state information. In our baseline sample, we match 1396 observations in PRC. Hence, considering
that only 1817 observations have name, city, and state information, our approximate matching rate is
closer to 77%. A more detailed description of our merging methodology appears in Section A of the
Online Appendix.

4



Industry Classification

Agriculture, Forestry, And Fishing

Construction

Finance, Insurance, And Real Estate

Manufacturing

Mining

Public Administration

Retail Trade

Services

Transportation, Communications,
Electric, Gas, And Sanitary Services

Wholesale Trade

Cyberattacks in the United States

Note: Shading indicates proportion of attachs in each state, relative to total establishments.
A darker color indicates a greater proportion of establishments attacked. Each dot represents one cyberattack.

Figure 1: Distribution of hacks across the U.S. within our sample.

establishments. And colors are assigned according to their SIC division. States are

colored according to the fraction of their establishments affected by cyberattacks in our

sample—the lighter the color, the lower the fraction. Although many hacks in our sample

affect establishments in California, Texas, New York, and Florida, Figure 1 shows that

cyberattacks are somewhat equally spread across states. Figure 1 also shows that hacks

affect establishments across a variety of different economic sectors.

Because observing more hacks affecting establishments with a specific characteristic

might be just a reflection of the fact that there are more establishments with such

characteristic, we combine the above data with a large random sample of NETS

establishments. Our idea is to add controls and improve the representativeness of

our data, obtaining a better picture of the anatomy of cyberattacks across U.S.

establishments. In particular, we add a random sample of about 415,000 NETS

establishments to our intermediate data. As a result, we obtain a sample with about

2.5 million establishment-year observations. For each establishment, we retrieve detailed

information, including business location, headquarters, employment, sales, and other
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establishment-level data at the annual frequency, from 2005 to 2019.

Table 1 reports summary statistics of our baseline sample. Panel A reports statistics

at the establishment-year level. The average establishment employs a bit less than seven

employees per year and generates sales for about 690,000 dollars. On an average year, 2%

of establishments belong to a publicly traded company. Panel B reports statistics at the

institution-year level. As Panel B shows, the average institution in our sample employs

a bit more than seven employees per year and generates sales of around 750,000 dollars.

On an average year, 1% of institutions are publicly traded companies. The juxtaposition

of Panels A and B shows that most institutions in our sample are small, non-publicly

traded, and composed of, at most, one establishment.

Table 1:
Summary Statistics

This table reports statistics of establishments and institutions in our baseline sample at the annual
frequency. Our sample contains 2,499,369 observations at the establishment-year level from 2005 to 2019.
Panel A reports statistics at the establishment level while Panel B reports statistics at the institution
level.

Panel A: Establishment level
Mean S.D. 10th 25th 50th 75th 90th

# of employees 6.89 13.92 1 2 2 5 15
Annual sales (in millions) 0.69 1.69 0.05 0.08 0.15 0.73 1.4
Ratio of public companies (in %) 2.4 0.31 2.1 2.2 2.3 2.5 2.8

Panel B: Institution level

Mean S.D. 10th 25th 50th 75th 90th
# of employees 7.21 16.57 1 2 2 4 13
Annual sales (in millions) 0.75 2.14 0.05 0.08 0.15 0.33 1.13
Ratio of public companies (in %) 1 0.13 0.8 0.92 0.99 1 1.2

3 Empirical Approach and Results

With our baseline sample in hand, we use the following logistic regression to explore

whether an establishment’s characteristics can alter the likelihood of being the target of

a cyberattack:

log

(
pit

1− pit

)
= β′Xit + ϵit, (1)
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where there are observations on establishments (i) across years (t). The above equation

uncovers a relationship between the logarithmic odds ratio, log
(

pit
1−pit

)
, and establishment

i’s characteristics—wherein pit captures the likelihood that establishment i is hacked at

year t. Here, Xit is a vector of explanatory and control variables, which includes the

constant term, and ϵit represents the error term. Explanatory variables include two

measures of size—annual sales and number of employees—and whether an establishment

belongs to a publicly traded company. To control for unobserved heterogeneity associated

with characteristics at the industry-, state-, and year-levels, we include industry-, state-

, and year-fixed effects. We also cluster standard errors at the industry-state level to

correct for potential autocorrelation among residuals.

Table 2 reports our central findings. Panel A presents results at the establishment

level while Panel B reports results at the institution level. For completeness, the first 6

columns in both Panels report different subsets of our explanatory variables while our

most robust specifications are reported in columns 7. As Table 2 shows, our explanatory

variables are statistically significant across most specifications. Panel A shows that larger

establishments and establishments of publicly traded companies are more likely to be

targeted. Panel B shows that this result also holds at the institution level.

As column 7 of Panel A shows, the coefficient associated with the public/private

dummy (0.98748) is statistically significant. The same applies to the coefficients

associated with sales (0.00091) and the number of employees (0.00009). Within a logistic

regression framework, these values mean that establishments of publicly traded companies

are 2.68 times more likely to be targeted than establishments of government or non-

publicly traded institutions. When compared with the average establishment in our

sample, establishments generating 100 million more in annual sales are 9.52% more likely

to be targeted. And establishments with 100 more employees are 0.90% more likely to

be victims of cyberattacks.

Largely consistent with Panel A’s findings, Panel B shows that publicly traded

companies and larger institutions are more likely to be targets. After converting

coefficients to their exponentiated values for interpretation, Panel B shows that publicly

traded companies are 9.32 times more likely to be targeted than nonpublic institutions.

And, when compared to the average institution, institutions with 100 more employees
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are 2.12% more likely to be targeted.7

Table 2:
Central Findings

Dependent variable: log(pit/(1− pit))
(1) (2) (3) (4) (5) (6) (7)

Panel A: Results at the establishment level
Public/Private dummy 1.02847*** 0.98934*** 1.01025*** 0.98748***

(0.31518) (0.31257) (0.31546) (0.16251)
Sales 0.00132*** 0.00114*** 0.00107*** 0.00091***

(0.00021) (0.00023) (0.00021) (0.00022)
# employees 0.00016*** 0.00014*** 0.00010*** 0.00009***

(0.00003) (0.00003) (0.00004) (0.00002)
Observations 2,341,562 2,341,562 2,341,562 2,341,562 2,341,562 2,341,562 2,341,562
R-squared 0.08684 0.08479 0.08430 0.08766 0.08730 0.08485 0.08771

Panel B: Results at the institution level
Public/Private dummy 2.31050*** 2.19597*** 2.22263*** 2.23217***

(0.33088) (0.33184) (0.32441) (0.17962)
Sales 0.00083*** 0.00066*** 0.00016 -0.00008

(0.00021) (0.00018) (0.00024) (0.00014)
# employees 0.00021*** 0.00020*** 0.00019*** 0.00021***

(0.00002) (0.00001) (0.00002) (0.00003)
Observations 2,242,172 2,242,172 2,242,172 2,242,172 2,242,172 2,242,172 2,242,172
R-squared 0.11154 0.10034 0.10435 0.11435 0.11903 0.10432 0.11894
Controls:
Industry FE Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.

3.1 Discussion and Data Limitations

Taken together, our findings support the view that larger establishments are more likely

to become targets of cyberattacks. The same applies to establishments of publicly traded

companies. Although many nonpublic and small institutions are frequent targets, not

taking into consideration the overall distribution of establishments within the economy

can lead to wrong conclusions.

Although PRC is, to the best of our knowledge, the most comprehensive public data

on cyberattacks, we are mindful of its selection biases. Small and private companies could

be underrepresented as they might not have the technology to uncover cyberattacks or

may not bother to report them to authorities. Large and publicly traded companies

might also have incentives to underreport—see, for example, Kamiya et al. (2021). In

addition, larger and publicly traded companies might have the resources to hide these
7Section C in the Online Appendix shows that our findings are consistent with results from running

probit (instead of logit) regressions and robust to variations in our merging methodology.
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incidents. Because the selection bias can potentially go in either direction we do not take

a stance on it and use the PRC data as it is.

4 Conclusion

Using granular data on cyberattacks and establishments in the United States we study

whether and how an institution’s characteristics can alter the likelihood of being the

target of cyberattacks. We find that larger establishments—in terms of sales and number

of employees—and establishments of publicly traded companies are more likely targets.

A similar result holds at the institution level. Our results are robust to variation in

regression specifications and merging methodologies.
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Online Appendix for
“On the Anatomy of Cyberattacks”

This Appendix contains material to supplement the analysis in “On the Anatomy of
Cyberattacks.” Section A provides more details about the construction of our baseline
sample while Section B provides additional statistics. Section C shows that our central
findings are robust to variation in regression specifications and merging methodologies.

A Construction of Baseline Sample
This section describes how to construct our baseline sample. We use the Privacy Rights
Clearinghouse (PRC) Data Breaches database to uncover hacks in the U.S. Although
these data contain 9,015 privacy breaches spanning from 2005 through 2019, only a
subsample of those observations are hacks that affect U.S. institutions. After applying
this filter, we obtain an initial sample of 2,508 observations at the establishment-year
level from 2005 to 2019.

With these data in hand, we standardize names of institutions, cities, and states as
several observations in PRC have misspelled names. This standardization also removes
extra punctuation, numbers, and common words and helps us to match these data
with NETS. Because observations in NETS are at the establishment level, we can find
information at the precise location of the hack—which is especially important for large
corporations with several establishments across the U.S. We first match observations in
our initial sample with NETS establishments using their precise names. We corroborate
that those matches are correct by comparing city and state information.

For observations with names that are slightly different from the names of NETS
establishments, we use string-matching. Here, we use the Jaro-Winkler distance to assess
the quality of our matches. Our baseline sample considers matches with a distance of
less than or equal to 0.13. We purposely select this threshold as it helps to generate
a sufficiently large number of precise matches. Section C explores the impact in our
results of modifying this threshold. For those cases in which our algorithm associates a
single establishment with multiple NETS establishments, we manually corroborate that
our matches are correct. When these matches look sufficiently similar, we average NETS
establishments’ characteristics to create a hypothetical NETS establishment to which we
associate the establishment from PRC. This process yields a sample of 26,410 potential
matches, representing 1,220 different establishments.1

To generate a representative sample of the U.S. economy, we augment our intermediate
sample with a large random draw of 413,139 different establishments from NETS.

1Although PRC contains 2508 hacks, many observations lack sufficient data to pin down the precise
NETS establishment involved in a hack. Our most precise matching algorithm requires name, city, and
state information to establish a mapping between an institution in PRC and a NETS establishment.
When there is no city information, our algorithm still works, but it is less reliable as we need to filter
establishments by state when querying information from NETS; here, the number of potential matches
tends to be large. Hence, it is harder to differentiate between different matches when city data is missing.
In our baseline sample, we match 1396 observations in PRC. Considering that only 1817 observations have
name, city, and state information, our approximate matching rate is closer to 77% (≈ 1396/1817). With
these data in hand, we further require that establishments mentioned in PRC have sufficiently enough
information on NETS so we can run panel regressions. Unfortunately, not all establishments mentioned
in PRC satisfy that requirement. In particular, 176 hacks are matched to NETS establishments that
lack sufficient information on employees, sales, industry, or business type. That is how we arrive to our
final number of matched establishments: 1220.
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This large random draw helps us tackle the dimensionality challenges inherent from
using NETS.2 For each establishment in these data, we retrieve the following annual
information from 2005 to 2019: number of employees, sales, and whether an establishment
is public or not. Within the baseline sample, we fill missing information with linear
interpolation. Section C explores the impact in our results of modifying the way we
fill in missing information. This process generates our baseline sample, which contains
2,499,369 observations at the establishment-year level from 2005 to 2019, representing
393,317 different establishments. Because certain establishments disappear throughout
the sample, our baseline data set can be thought of an unbalanced panel.

B Additional Summary Statistics
This section provides additional statistics of our baseline sample. Figure 1 depicts the
time series of hacks in our baseline sample separated by whether a hacked establishment
is public or not, its number of employees, sales, and industry at the year of the hack.
The figure on the upper left panel shows that most hacked establishments in our sample
are either private or government institutions. The figure on the upper right panel shows
that many hacked establishments have fewer than 20 employees when hacked. The figure
on the lower left panel shows that several hacked establishments generate more than 3
million USD in annual sales. The figure on the lower right panel shows that a large
fraction of hacked establishments is within the health, educational, and business sectors.

For completeness, Figure 2 provides other (potentially relevant) characteristics of
the time series of hacked establishments in our baseline sample, including legal status,
whether an establishment is an importer or exporter, whether an establishment has a
government contract, and the gender of its CEO (or the CEO of its parent institution).
Because most of these characteristics are less populated in NETS, we do not use them
as controls within our regression specifications. Yet we present this information for the
interested reader.

For the interested reader, Table 1 provides a more detailed breakdown of hacked
establishments and institutions by major industry sector—which are captured by SIC
divisions (i.e., 1-digit SIC codes).

C Robustness Tests
This section shows that our main results are robust to variation in regression specifications
and merging methodologies. Section C.1 shows that our findings are consistent with
results obtained from running probit regressions. Section C.2 shows that our results are
robust to the way we deal with missing observations when creating our baseline sample.
Section C.3 shows that our results are also robust to variation in the precise threshold
used when string-matching data from PRC and NETS.

2NETS has 87,564,680 unique IDs. Each ID aims to represent a different establishment. If we were to
load information for one year and all IDs would take about one hour and require 44.34 GB in memory.
The dimensionality challenge arises because we run regressions using 15 years of data (2005-2019). To
create our baseline sample, we pull data for each establishment from 4 different NETS data frames:
Employees, Sales, SIC, and Misc. Using the complete NETS sample would require loading 1,313,347,200
observations—assuming each ID has 15 years of data—which is computationally unfeasible.
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Figure 1: Characteristics of hacked establishments.

C.1 Probit Specifications
Table 2 reports results from running probit regression using our baseline sample.

C.2 Dealing with Missing Information
Beside linear interpolation, we use two methodologies when dealing with missing
information. Our first methodology simply omits observations with missing values.
Table 3 reports these results.

Our second methodology uses linear interpolation for intermediate values while
keeping extreme values constant when extrapolating two years ahead and backwards.
For example, suppose the number of employees of a given establishment is known at
years (t − 1) and (t + 1), but unknown at any other year. Using linear interpolation
and the number of employees for years (t − 1) and (t + 1), we determine the number of
employees for year t. We assume that values for years (t−3) and (t−2) equal the number
of employees for year (t− 1) and that values for years (t+ 2) and (t+ 3) equal the value
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Figure 2: Other characteristics of hacked establishments in our sample.

for year (t+ 1). Table 4 reports these results.
For completeness, we also report results from running probit regressions using the

above two methodologies. Table 5 reports the probit counterpart of Table 3 while Table 6
reports the probit counterpart of Table 4. As both Tables show, our central findings are
robust to variation in how we handle missing observations.

C.3 Thresholds Used in String-Matching
The following tables show that our central findings are also robust to variations in the
precise value used when string-matching observations from PRC and NETS. The baseline
sample uses a Jaro-Winkler distance threshold of 0.13. Higher thresholds generate more
potential matches, at the risk of being less precise. Lower thresholds generate more
precise but fewer matches. We test two different thresholds. We use a threshold of 0.065
to increase the matching precision without compromising the size of our baseline sample
too much. We also use a threshold of 0.26 to increase the size of our sample without
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Table 1:
Industry Groups

This table reports statistics at the establishment and institution-level for observations in our the baseline
sample.

Industry (SIC division) # Establishments # Institutions
Mining 596 545
Public administration 2803 1733
Manufacturing 11907 11558
Agriculture, forestry, and fishing 12351 11916
Wholesale trade 14770 14179
Transportation and public utilities 16782 15618
Construction 28768 28476
Finance, insurance, and real estate 36094 34515
Retail trade 49331 44955
Services 219983 210915

Table 2:
Probit regressions using baseline sample

Probit Regressions
(1) (2) (3) (4) (5) (6) (7)

Panel A: Without fixed-effects
Public/Private dummy 0.43320*** 0.41509*** 0.42445*** 0.41329***

(0.03050) (0.03098) (0.03069) (0.03102)
Sales 0.00059*** 0.00048*** 0.00048** 0.00038***

(0.00006) (0.00006) (0.00007) (0.00007)
# employees 0.00008*** 0.00007*** 0.00005*** 0.00004***

(0.00001) (0.00001) (0.00001) (0.00001)
Observations 2,499,369 2,499,369 2,499,369 2,499,369 2,499,369 2,499,369 2,499,369

Panel B: With fixed-effects & clustered standard errors
Public/Private dummy 0.3346*** 0.31944*** 0.32689*** 0.31893***

(0.09916) (0.09747) (0.09887) (0.09746)
Sales 0.00058*** 0.00051*** 0.00047*** 0.00041***

(0.00010) (0.00009) (0.00010) (0.00010)
# employees 0.00007*** 0.00006*** 0.00004** 0.00003**

(0.00002) (0.00001) (0.00002) (0.00003)
Observations 2,341,562 2,341,562 2,341,562 2,341,562 2,341,562 2,341,562 2,341,562
R-squared 0.08808 0.08609 0.08542 0.08923 0.08873 0.08614 0.08927

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.

compromising the precision of our matching too much.

C.3.1 Threshold 0.065

Table 7 reports results when 0.065 is used as a distance threshold when performing string-
matching.

C.3.2 Threshold 0.26

Table 8 reports results when 0.26 is used as a distance threshold when performing string-
matching.
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Table 3:
Results when missing values are omitted. Logit regressions.

Dependent variable: log(pit/(1− pit))
(1) (2) (3) (4) (5) (6) (7)

Panel A: Without fixed-effects
Public/Private dummy 1.62464*** 1.57539*** 1.60508*** 1.56742***

(0.09566) (0.09740) (0.09632) (0.09768)
Sales 0.00141*** 0.00105*** 0.00124** 0.00091***

(0.00013) (0.00013) (0.00014) (0.00015)
# employees 0.00015*** 0.00012*** 0.00010*** 0.00008***

(0.00002) (0.00002) (0.00002) (0.00002)
Observations 2,510,338 2,510,338 2,510,338 2,510,338 2,510,338 2,510,338 2,510,338

Panel B: With fixed-effects & clustered standard errors
Public/Private dummy 1.25150*** 1.21458*** 1.23144*** 1.21128***

(0.32018) (0.31935) (0.32069) (0.16577)
Sales 0.00134*** 0.00116*** 0.00108*** 0.00093***

(0.00022) (0.00023) (0.00022) (0.00023)
# employees 0.00017*** 0.00014*** 0.00010** 0.00009***

(0.00003) (0.00003) (0.00004) (0.00003)
Observations 2,348,581 2,348,581 2,348,581 2,348,581 2,348,581 2,348,581 2,348,581
R-squared 0.08953 0.08592 0.08522 0.09070 0.09017 0.08602 0.09078

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table 4:
Results when missing values are interpolated. Logit regressions.

Dependent variable: log(pit/(1− pit))
(1) (2) (3) (4) (5) (6) (7)

Panel A: Without fixed-effects
Public/Private dummy 1.50593*** 1.46282*** 1.48714*** 1.45264***

(0.09809) (0.09964) (0.09879) (0.10005)
Sales 0.00149*** 0.00117*** 0.00135*** 0.00105***

(0.00014) (0.00015) (0.00015) (0.00016)
# employees 0.00015*** 0.00012*** 0.00010*** 0.00008***

(0.00002) (0.00002) (0.00002) (0.00002)
Observations 2,370,419 2,370,419 2,370,419 2,370,419 2,370,419 2,370,419 2,370,419

Panel B: With fixed-effects & clustered standard errors
Public/Private dummy 1.13705*** 1.11053*** 1.11234*** 1.09918***

(0.34388) (0.34284) (0.34685) (0.20103)
Sales 0.00210*** 0.00204*** 0.00178** 0.00177**

(0.00072) (0.00069) (0.00074) (0.00073)
# employees 0.00018*** 0.00015*** 0.00011*** 0.00009***

(0.00004) (0.00004) (0.00003) (0.00003)
Observations 2,212,604 2,212,604 2,212,604 2,212,604 2,212,604 2,212,604 2,212,604
R-squared 0.10766 0.10595 0.10485 0.10956 0.10842 0.10617 0.10968

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
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Table 5:
Results when missing values are omitted. Probit regressions.

Probit Regressions
(1) (2) (3) (4) (5) (6) (7)

Panel A: Without fixed-effects
Public/Private dummy 0.47953*** 0.45973*** 0.47093*** 0.45770***

(0.02981) (0.03036) (0.03002) (0.03040)
Sales 0.00064*** 0.00052*** 0.00053*** 0.00042***

(0.00006) (0.00006) (0.00006) (0.00007)
# employees 0.00008*** 0.00007*** 0.00005*** 0.00004***

(0.00001) (0.00001) (0.00001) (0.00001)
Observations 2,510,338 2,510,338 2,510,338 2,510,338 2,510,338 2,510,338 2,510,338

Panel B: With fixed-effects & clustered standard errors
Public/Private dummy 0.40365*** 0.38938*** 0.39609*** 0.38843***

(0.10084) (0.09943) (0.10063) (0.09938)
Sales 0.00061*** 0.00054*** 0.00050*** 0.00044***

(0.00010) (0.00009) (0.00010) (0.00010)
# employees 0.00008*** 0.00007*** 0.00004** 0.00003**

(0.00002) (0.00002) (0.00002) (0.00002)
Observations 2,348,581 2,348,581 2,348,581 2,348,581 2,348,581 2,348,581 2,348,581
R-squared 0.09078 0.08726 0.08630 0.09244 0.09170 0.08735 0.09251

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table 6:
Results when missing values are interpolated. Probit regressions.

Probit Regressions
(1) (2) (3) (4) (5) (6) (7)

Panel A: Without fixed-effects
Public/Private dummy 0.44792*** 0.42906*** 0.43957*** 0.42529***

(0.03075) (0.03126) (0.03099) (0.03137)
Sales 0.00077*** 0.00066*** 0.00067*** 0.00057***

(0.00008) (0.00008) (0.00008) (0.00008)
# employees 0.00009*** 0.00008*** 0.00006*** 0.00005***

(0.00001) (0.00001) (0.00001) (0.00001)
Observations 2,370,419 2,370,419 2,370,419 2,370,419 2,370,419 2,370,419 2,370,419

Panel B: With fixed-effects & clustered standard errors
Public/Private dummy 0.36782*** 0.34999*** 0.35864*** 0.34695***

(0.10878) (0.10797) (0.10944) (0.10862)
Sales 0.00123*** 0.00117*** 0.00109*** 0.00105***

(0.00040) (0.00036) (0.00042) (0.00037)
# employees 0.00009** 0.00008** 0.00004 0.00004

(0.00004) (0.00004) (0.00003) (0.00002)
Observations 2,212,604 2,212,604 2,212,604 2,212,604 2,212,604 2,212,604 2,212,604
R-squared 0.11000 0.10953 0.10726 0.11323 0.11114 0.10973 0.11335

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
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Table 7:
Logit regressions. Threshold: 0.065.

Dependent variable: log(pit/(1− pit))
(1) (2) (3) (4) (5) (6) (7)

Panel A: Without fixed-effects
Public/Private dummy 1.52269*** 1.48176*** 1.50625*** 1.47486***

(0.10486) (0.10641) (0.10548) (0.10667)
Sales 0.00139*** 0.00105*** 0.00123** 0.00093***

(0.00015) (0.00016) (0.00017) (0.00017)
# employees 0.00014*** 0.00011*** 0.00009*** 0.00008***

(0.00002) (0.00002) (0.00003) (0.00003)
Observations 2,473,770 2,473,770 2,473,770 2,473,770 2,473,770 2,473,770 2,473,770

Panel B: With fixed-effects & clustered standard errors
Public/Private dummy 1.06187*** 1.02741*** 1.04545*** 1.02659***

(0.37061) (0.36508) (0.37134) (0.15999)
Sales 0.00153*** 0.00140*** 0.00132*** 0.00120***

(0.00028) (0.00024) (0.00026) (0.00021)
# employees 0.00016*** 0.00014*** 0.00007* 0.00007***

(0.00003) (0.00003) (0.00004) (0.00002)
Observations 2,308,832 2,308,832 2,308,832 2,308,832 2,308,832 2,308,832 2,308,832
R-squared 0.08475 0.08266 0.08197 0.08574 0.08515 0.08262 0.08570

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.

Table 8:
Logit regressions. Threshold: 0.26.

Dependent variable: log(pit/(1− pit))
(1) (2) (3) (4) (5) (6) (7)

Panel A: Without fixed-effects
Public/Private dummy 1.27134*** 1.23438*** 1.25470*** 1.22910***

(0.07899) (0.08004) (0.07941) (0.08016)
Sales 0.00115*** 0.00087*** 0.00096** 0.00071***

(0.00012) (0.00013) (0.00014) (0.00015)
# employees 0.00014*** 0.00012*** 0.00010*** 0.00008***

(0.00002) (0.00002) (0.00002) (0.00002)
Observations 2,795,110 2,795,110 2,795,110 2,795,110 2,795,110 2,795,110 2,795,110

Panel B: With fixed-effects & clustered standard errors
Public/Private dummy 0.97248*** 0.94040*** 0.95336*** 0.93721***

(0.29309) (0.29280) (0.29344) (0.16944)
Sales 0.00091*** 0.00071*** 0.00063*** 0.00045**

(0.00020) (0.00018) (0.00020) (0.00021)
# employees 0.00016*** 0.00014*** 0.00012*** 0.00011***

(0.00003) (0.00003) (0.00003) (0.00002)
Observations 2,677,613 2,677,613 2,677,613 2,677,613 2,677,613 2,677,613 2,677,613
R-squared 0.06387 0.06156 0.06148 0.06422 0.06424 0.06168 0.06432

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
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