
Online Appendix (for online publication only)

A. Omitted Proofs

This section contains omitted proofs of the paper.

A.1. Solving the Optimization Problem

In this subsection, I provide the detailed steps of solving the optimization problem of each

agent. Recall that agent j’s optimization problem is

max
e1j ,{cij ,dij}i2N ,

a1j ,{cjk,djk}k2N

Ej

"⇣
e1j�✏j+a1jp1+

P
i2N (cji min{p1,dji}�cij min{p1,dij})�

P
i:mi<0 ij(C)[p1�dij ]+

⌘ s

p1

#

s.t. a1j +
X

k2N
cjk �

X

i2N
cij ,

e0 = e1j �
X

i2N
cijqi(dij) +

X

k2N
cjkqj(djk) + a1jp0,

(A1)

and µ and � are Lagrangian multipliers for the collateral constraint and budget constraint, re-

spectively. Denote the Lagrangian problem as L and the Lagrangian multipliers for nonnegativity

constraints as ⇠e, ⇠cij , ⇠a, ⇠cjk . The first-order conditions of the optimization problem are

@L
@e1j

= Ej


s

p1

�
� �+ ⇠e = 0 (A2)

@L
@cij

= Ej

✓
�min {p1, dij}� 1 {i 2 B(✏)} @ ij(C)

@cij
[p1 � dij ]

+

◆
s

p1

�
� µ+ �qi(dij) + ⇠cij = 0

(A3)

@L
@dij

= Ej


(�cij + 1 {i 2 B(✏)} ij(C))

s

p1

����p1 > dij

�
Prj(p1 > dij) + �cijq

0
i(dij) = 0 (A4)

@L
@a1j

= Ej [s] + µ� �p0 + ⇠a = 0 (A5)

@L
@cjk

= Ej


(min {p1, djk})

s

p1

�
+ µ� �qj(djk) + ⇠cjk = 0 (A6)

@L
@djk

= Ej


(cjk)

s

p1

����p1 > djk

�
Prj(p1 > djk)� �cjkq

0
j(djk) = 0. (A7)

From Lemma 1, e1j > 0 and ⇠e = 0. Thus, (A2) implies

� = Ej


s

p1

�
,

which is used in the proof of Lemma A4. Equations (A4) and (A7) are also used in the proof of

Lemma A4.
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For the borrowing and lending amounts, first consider the case that agent j’s collateral constraint

is not binding—that is, µ = 0 and cjk > 0 for some k. Then, (A6) becomes

Ej


min {p1, djk}

s

p1

�
= Ej


s

p1

�
qj(djk),

which can be rearranged as (10). This return can be interpreted as the return of lending more to

k without leverage because agent j is not using this additional asset as collateral to leverage this

lending.

Second, consider the case that agent j’s collateral constraint is binding, and agent j is lending

or purchasing with a positive amount—that is, µ > 0 and cij , cjk > 0 for some i and k. Then, (A3)

and (A6) can be rearranged as

µ = Ej

✓
�min {p1, dij}� 1 {i 2 B(✏)} @ ij(C)

@cij
[p1 � dij ]

+

◆
s

p1

�
+ Ej


s

p1

�
qi(dij)

µ = Ej


s

p1

�
qj(djk)� Ej


(min {p1, djk})

s

p1

�

)Ej


s

p1

�
=

Ej

✓
min {p1, djk}�min {p1, dij}� 1 {i 2 B(✏)} @ ij(C)

@cij
[p1 � dij ]+

◆
s

p1

�

qj(djk)� qi(dij)
,

which is the return on lending with leverage, because j is immediately using the additional asset

from lending to k as collateral to borrow from i. Also, the previous equations are the derivation of

(11).

Third, for an agent with a1j > 0, (A5) implies

Ej


s

p0

�
+

µ

p0
= Ej


s

p1

�
,

which is used in the proof of Lemma A5. If agent j leverages this asset purchase, then (A3) and

(A5) imply

µ = Ej

✓
�min {p1, dij}� 1 {i 2 B(✏)} @ ij(C)

@cij
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+

◆
s

p1

�
+ Ej


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p1

�
qi(dij)

µ = Ej


s

p1

�
p0 � Ej [s]

)Ej
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◆
s
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�

p0 � qi(dij)
,

which is how (A15) is derived.

2



A.2. Preliminary Lemmas

Lemma A1. For any given collateralized debt network under intermediation order, the e↵ective

demand [mj(p)]+ is increasing in p for any j 2 N .

Proof of Lemma A1. It is enough to show that mj(p), which is

e1j � ✏j + a1j +
X

k2N
cjk min{p, djk}�

X

i2N
cij min{p, dij}�

X

i2B(✏)

 ij(C)[p� dij ]
+,

is increasing in p. Because min{dij , p}  p, both min{p, dij} and min{djk, p} are increasing in p.

For any value of promise d̂,

X

i2N
dij�d̂

cij min {dij , p} 
X

k2N
djk�d̂

cjk min {djk, p}+ a1j

by intermediation order. Therefore, the sum of the payments from other agents will always exceed

the sum of payments that j has to pay to others.18 Also, by assumption 1,  ij(C)  cij , the total

sum of coe�cients for p will always be non-negative. For fixed B(✏|s), each mj(p) is increasing in

p. Therefore, for any p0 < p, B(✏|s, p) ✓ B(✏|s, p0) and the indicator function for the bankruptcy

cost is decreasing in p as well.

The following lemma shows that whenever leveraging is profitable for a certain investment, the

same leverage makes another investment more profitable than not leveraging.

Lemma A2. Suppose
a� p

b� q
= ⇡ =

c� p

d� q
,
e

f
� ⇡ and

a

b
<

a� p

b� q
for a, b, c, d, e, f, p, q,⇡ > 0.

Then,
c

d
<

c� p

d� q
and

e

f
<

e� p

f � q
.

Proof of Lemma A2. Since
a� p

b� q
= ⇡, a � p = b⇡ � q⇡. By

a

b
<

a� p

b� q
, I obtain a < b⇡. By

combining the previous equation and inequality, I have p < q⇡. Now suppose that
c

d
� c� p

d� q
. Then,

c� p

d� q
= ⇡ implies c � d⇡. Combining this with p < q⇡, I get c < d⇡, which is a contradiction.

Therefore,
c

d
<

c� p

d� q
. Similarly, suppose

e

f
� e� p

f � q
. Then, I have

e

f
 p

q
< ⇡, which contradicts

the assumption
e

f
� ⇡. Thus,

e

f
<

e� p

f � q
.

18This is, in fact, the reason why there are collateral constraints. It guarantees the agent to have a non-negative
amount of cash from all the payments netted out so that they can actually pay the debt.
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A.3. Properties of Payment Equilibria

Proof of Proposition 1. If p = s, then I automatically have an equilibrium that satisfies

inequality (4) or otherwise p cannot be s. Now suppose p < s. The equilibrium equation can be

represented as

(m, p) =

 
[mj(p)]j2N ,

P
i2N [mi(p)]+P

j2N a1j

!
⌘ M[(m, p)].

Consider an ordering ⌫ such that (m, p) ⌫ (m0, p0) when m � m0 and p � p0. Then an infimum

under ⌫ can always be defined for any subset of Rn+1. By the assumption, (m(s), s) � M[(m(s), s)].

Since the denominator of the price equation is constant and a2i (p) and [mi(p)]+ for any i 2 N are

increasing in p by Lemma A1, the function M is an order-preserving function. Then, by Knaster-

Tarski’s fixed point theorem, there exists a fixed point (m⇤, p⇤), and the set of such fixed points

that satisfy the equilibrium condition has a maximal point.

If equation (3) is true when p = 0, then I already have a fixed point with p  s. Now suppose

that the maximal fixed point price p̄ is greater than s, and I will show that either there exists a

price 0 < p  s that is also a fixed point or p = s satisfies equilibrium condition (4). If equation

(3) is not true when p = 0, then that implies at least some mj(0) is positive for j 2 N . Therefore,P
i2N [mi(p)]+P

j2N a1j
> 0 for any p > 0. This implies that as p increases, the di↵erence between the p

and

P
i2N [mi(p)]+P

j2N a1j
will be eventually closed out at p̄ by intermediate value theorem. Therefore,

the two functions either meet for some p  s, or the gap between them does not close out even

when p = s so equation (4) holds.

Proof of Proposition 2. If agent j is bankrupt under the original equilibrium, then the

statements hold with equality. Suppose that agent j is not bankrupt under ✏—that is, j /2 B(✏|s).
Because of the increase in the liquidity shock, m⇤

j is decreasing. Also, if the original equilibrium

price was liquidity constrained, p⇤ = ⇡(p⇤) < s, then the new equilibrium price decreases by (3).

This could further decrease m⇤
i for i 6= j by Lemma A1. It could also trigger additional bankruptcy

of i or j and lender default loss �i(p) that will decrease wealth of i’s borrowers Vi further, and

the price of the asset will decrease even further by (7). The same argument goes through with the

increase in lender default losses  jk and the decrease in cash holding e1j for any j, k 2 N .
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A.4. Results on Network Equilibrium

Proof of Lemma 1. For each agent j 2 N , the maximum cash the agent can hold for t = 1

is by saving all the cash while not lending any cash because borrowing requires collateral and no

arbitrage condition will prevent anyone from making positive cash from borrowing. The price of

the asset at t = 0 cannot exceed the most optimistic agent’s fair value since there is always a

possibility of liquidity constrained underpricing in t = 1. Thus, e0+As1 is always the upper bound

of the maximum amount of cash each agent can hold while holding all the asset endowments and

not borrowing or lending at all. Since G is di↵erentiable with full support of [0, ✏], any agent can

go bankrupt regardless of how much cash they hold in t = 0 because G([e0 + As1, ✏]) is positive.

Now suppose that agent j has zero cash holdings, e1j = 0. Agent j’s nominal wealth becomes zero

if p1 = 0. By equation (7), this implies that if every other agent goes bankrupt because of liquidity

shocks while agent j is not, which happens with positive probability, the price of the asset becomes

zero while agent j is not bankrupt. Marginal utility of cash in such a state becomes lim
p1!0

sj
p1

, which

is infinity. Hence, expected marginal utility of holding cash in t = 0 becomes infinity as well and

agent j would like to hold a positive amount of cash for any j 2 N . If e1j > 0, then the only

state with infinite marginal utility of cash is when ✏j = e1j , which happens with zero probability by

di↵erentiability of G. Thus, in an equilibrium, e1j > 0 for any j 2 N .

The proof of Theorem 1 is based on the following three lemmas. First, Lemma A3 establishes

that interest rate of the same contract increases over the lender’s optimism—that is, optimistic

agents demand higher interest rates. Second, Lemma A4 implies that contracts traded in positive

amount should have maximum leverage by promising the fundamental value of the asset in the

lender’s perspective. Third, Lemma A5 pins down the natural buyers of each contract and the

asset. Therefore, the three lemmas combined construct the pattern of intermediation and positively

traded contracts in a network equilibrium.

Lemma A3 (Cash Return Ordering). For any two agents in a network equilibrium, the cash return

from the more optimistic agent is always greater than the cash return from the less optimistic

agent—that is, Ej


sj
p1

�
> Ek


sk
p1

�
for any j < k and j, k 2 N .

Proof of Lemma A3. The proof is done by contradiction. Suppose that Ej


sj
p1

�
 Ek


sk
p1

�
for

j < k. If both j and k are simply holding cash exclusively, then they have the same cash holdings

and it is trivially Ej


sj
p1

�
> Ek


sk
p1

�
. Therefore, at least agent k should be investing in something

other than cash. Suppose that agent k is borrowing from i and lending to l. Then, agent k’s
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marginal return from this intermediation is

Ek


min

⇢
sk, d0

sk
p1

�
�min

⇢
sk, d

sk
p1

�
� @ ik(C)

@cik


sk � d

sk
p1

�
1 {i 2 B(✏)}

�

qk(d0)� qi(d)

=

skEk


min

⇢
1,

d0

p1

�
�min

⇢
1,

d

p1

�
� @ ik(C)

@cik


1� d

p1

�
1 {i 2 B(✏)}

�

qk(d0)� qi(d)
= Ek


sk
p1

�
.

The last equality holds because the return should be equal to the return from holding cash because

of positive cash holding by Lemma 1. Now consider an agent j who deviates from the equilibrium

portfolio decision. Agent j can mimic the investment portfolio of agent k and obtain the return of

sjEj


min

⇢
1,

d0

p1

�
�min

⇢
1,

d

p1

�
� @ ik(C)

@cik


1� d

p1

�
1 {i 2 B(✏)}

�

qk(d0)� qi(d)
 Ej


sj
p1

�
,

with the last inequality coming from the optimality of agent j’s original portfolio decision. In other

words, agent j would have already done the intermediation more if it exceeded the return from

agent j’s cash holdings (which is again positive by Lemma 1). If agent j is mimicking k’s portfolio

exactly, the two agents will have the same cash holdings and also the same counterparty risks (or

even less if j was the lender). Then, inequalities

Ej


min

⇢
1,

d0

p1

�
�min

⇢
1,

d

p1

�
� @ ik(C)

@cik


1� d

p1

�
1 {i 2 B(✏)}

�

�Ek


min

⇢
1,

d0

p1

�
�min

⇢
1,

d

p1

�
� @ ik(C)

@cik


1� d

p1

�
1 {i 2 B(✏)}

�
,

and sj > sk imply

Ej


sj
p1

�
�

sjEj


min

⇢
1,

d0

p1

�
�min

⇢
1,

d

p1

�
� @ ik(C)

@cik


1� d

p1

�
1 {i 2 B(✏)}

�

qk(d0)� qi(d)

>

skEk


min

⇢
1,

d0

p1

�
�min

⇢
1,

d

p1

�
� @ ik(C)

@cik


1� d

p1

�
1 {i 2 B(✏)}

�

qk(d0)� qi(d)
= Ek


sk
p1

�
,

that is, Ej


sj
p1

�
> Ek


sk
p1

�
, which contradicts the initial assumption Ej


sj
p1

�
 Ek


sk
p1

�
. The

same method could be applied to any other possible investment strategy of agent k . Therefore,

Ej


sj
p1

�
> Ek


sk
p1

�
holds for any equilibrium.

Lemma A4 (Maximum Leverage). Suppose that agent j buys an asset or a contract and borrows

from agent i in a network equilibrium. Then, agent j maximizes the contract leverage by borrowing

the maximum amount of cash j can borrow from agent i, which is si.
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Proof of Lemma A4.

From the return equation (11), I immediately get d0 > d, and qj(d0) > qi(d) should hold for

agent j’s decision optimality and no arbitrage.19 Similarly, from the positive cash holdings by

Lemma 1 and optimality, and by Leibniz integral rule,

q0i(d) =

Ei


1

p1

���p1 > d

�
Pri(p1 > d)

Ei


1

p1

� ,

which is zero for any d > si. The partial derivative (left derivative if d = si) for agent j’s decision

on the contract promise choice d to agent i is

sjEj


�cij
p1

+ ij(C)
1

p1
1 {i 2 B(✏)}

���p1 > d

�
Prj(p1 > d) + �cijq

0
i(d)

=sjEj


�cij
p1

���p1 > d

�
Prj(p1 > d) + sjEj


 ij(C)

1

p1
1 {i 2 B(✏)}

���p1 > d

�
Prj(p1 > d)

+ sjEj


1

p1

�
cij

Ei


1

p1

���p1 > d

�
Pri(p1 > d)

Ei


1

p1

� ,

where � is the Lagrangian multiplier for the budget constraint. From Lemma 1 and the first-order

condition with respect to e1j , we have � = sjEj [1/p1]. First, if d > si, then the last term is zero.

Since cij >  ij(C), the first-order derivative is negative for any d > si. Now consider d  si. I show

that the above first-order derivative is positive, even if the counterparty risk is zero, by showing

the following inequality for any d  si,

Ej


1

p1

���p1 > d

�
Prj(p1 > d)

Ej


1

p1

� <

Ei


1

p1

���p1 > d

�
Pri(p1 > d)

Ei


1

p1

� . (A8)

Suppose that the above inequality does not hold—that is,

Ej


1

p1

���p1 > d

�
Prj(p1 > d)

Ej


1

p1

� �
Ei


1

p1

���p1 > d

�
Pri(p1 > d)

Ei


1

p1

� . (A9)

19No arbitrage prevents the case of d0 < d and qj(d
0) < qi(d).
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From Lemma A3, the cash return of j should exceed that of i as

Ej


sj
p1

�
=sj

✓
Ej


1

p1

���p1 > d

�
Prj(p1 > d) + Ej


1

p1

���p1  d

�
Prj(p1  d)

◆

>si

✓
Ei


1

p1

���p1 > d

�
Pri(p1 > d) + Ei


1

p1

���p1  d

�
Pri(p1  d)

◆
= Ei


si
p1

�
,

which can be rearranged as

1

sj

✓
Ej


1

p1

���p1 > d

�
Prj(p1 > d) + Ej


1

p1

���p1  d

�
Prj(p1  d)

◆

<
1

si

✓
Ei


1

p1

���p1 > d

�
Pri(p1 > d) + Ei


1

p1

���p1  d

�
Pri(p1  d)

◆ .
(A10)

By the assumption (A9),

sjEj


1

p1

���p1 > d

�
Prj(p1 > d)

sj

✓
Ej


1

p1

���p1 > d

�
Prj(p1 > d) + Ej


1

p1

���p1  d

�
Prj(p1  d)

◆

�
siEi


1

p1

���p1 > d

�
Pri(p1 > d)

si

✓
Ei


1

p1

���p1 > d

�
Pri(p1 > d) + Ei


1

p1

���p1  d

�
Pri(p1  d)

◆ ,

which implies that

sjEj


1

p1

���p1 > d

�
Prj(p1 > d)

siEi


1

p1

���p1 > d

�
Pri(p1 > d)

>

sjEj


1

p1

�

siEi


1

p1

� .

Since the upper bound for price under agent j’s perspective, sj , is higher than that under agent i’s

perspective, si, the previous inequality holds only if Prj(p1 > d) is much larger than Pri(p1 > d).

However, then Pri(p1  d) > Prj(p1  d) and 1/p1 is larger when p1  d than 1/p1 when p1 > d.

Therefore,

sjEj


1

p1

�

siEi


1

p1

� < 1,

which violates (A10). Therefore, the assumption (A9) is false, and (A8) holds, which implies the

first-order derivative (left derivative) is positive for any d  si. Hence, agent j promises si and
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maximizes agent j’s leverage.

Lemma A5 (Natural Buyers). In a network equilibrium, the following statements are true:

1. The most optimists, agent 1, buys some or all of the asset, a1,1 > 0, and p0 = q1(s1).

2. For any agent i < n, i borrows from agent i+ 1 with positive amount, ci+1,i > 0.

3. For any agent i < n�1, if cji > 0, and i’s perceived marginal counterparty risks of j and k are

the same for i < j < k, then i marginally prefers borrowing more from agent j to borrowing

more from agent k.

Proof of Lemma A5. First, consider the option of purchasing the asset without leverage.

Suppose agent j > 1 is buying the asset while agent 1 is not buying. Return from the asset

purchase for agent j is sj/p0. By Lemma 1, agent j should equate the returns from cash and asset

as

sj
p0

= Ej


sj
p1

�
.

But then,
sj
p0

<
s1
p0

< E1


s1
p1

�
because agent 1 does not purchase the asset. Hence,

sjEj


1

p1

�
=

sj
p0

<
s1
p0

< s1E1


1

p1

�
< s1Ej


1

p1

�
=

s1
p0

,

where the last inequality comes from the fact that agent j has less cash and is more likely to

experience severe under pricing as well as a lower upper bound for price p1, and the above inequality

leads to a contradiction. This implies agent j would rather sell the asset to agent 1 and both make

profitable trades. The same inference can be done with levered purchases, as both agents can do

the same borrowing from the same set of lenders and simply change the price as the down payment

such as p0 � q(si).

The second statement holds with the similar argument in the proof of the first statement. The

problem for agent i becomes isomorphic to agent 1’s optimization by substituting the asset with

the promise of si by agent i � 1, which is coming from Lemma A4. Then, I can apply the same

logic as in the first statement. Agent i can always mimic an agent who is more pessimistic and

purchasing the contract, and increase payo↵ for the given price.

For the third statement, denote the implied expected lender default from agent i under j’s belief

as !ij(d;C) ⌘ Ej [[p1 � d]+1[i 2 B(✏|s)]]. The counterparty risk of borrowing from agent i for j is

 ij(C)!ij(d;C). Then, the marginal returns from a leveraged position is

Rj
i ⌘

si
qi(si)� qj(sj)

Ei


min

⇢
1,

si
p1

�
�min

⇢
1,

sj
p1

��
+ 0

ji(C)!ji(sj ;C)
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for agents i < j. First start with agents as i = 1, j = 2, k = 3. Suppose that agent 1 has the

same marginal counterparty risks for agent 2 and 3. By the first and second statements, agent 1

buys the asset and agent 2 lends to agent 1 that promises s2. By the first and second statements,

buying the asset and borrowing from agent 2 should be one of the optimal choices for agent 1. By

Lemma 1, the return from this decision should be equal to the cash return for agent 1—that is,

R2
1 = E1


s1
p1

�
.

Now suppose that the third statement is not true—that is, R2
1  R3

1. If R2
1 < R3

1, then agent

1 does not borrow from agent 2, which contradicts the second statement. Therefore, the only case

left to check is R2
1 = R3

1. Then, both returns should equal the cash return

s1E1


min

⇢
1,

s2
p1

��

q2(s2)
=

s1E1


min

⇢
1,

s3
p1

��

q3(s3)
.

By the previous two statements of the lemma, agent 1’s leveraged purchase by borrowing from

agent 2 should be profitable and the di↵erence in expected payment of s3 to agent 3 between agent

1 and 2 cannot exceed their di↵erence in beliefs. Thus,

s2E2


min

⇢
1,

s2
p1

��

q2(s2)
<

s1E1


min

⇢
1,

s2
p1

��

q2(s2)
=

s1E1


min

⇢
1,

s3
p1

��

q3(s3)
<

s2E2


min

⇢
1,

s3
p1

��

q3(s3)
.

But, then

s2E2


min

⇢
1,

s2
p1

��

q2(s2)
<

s2E2


min

⇢
1,

s3
p1

��

q3(s3)
implies that agent 2 does not want to borrow

from agent 3, which contradicts the second statement. Therefore, R2
1 > R3

1. In fact, the above

arguments hold for any three consecutive agents i, i+ 1, i+ 2 for i < n� 1.

Now I extend the case to consider any arbitrary agents i < j < k with i < n� 1. Suppose that

j = i+ 1 and k > i+ 1 and Rj
i  Rk

i . Again, by the same argument, the only possible case left is

Rj
i = Rk

i . Then, by the similar process for the previous case

sjEj


min

⇢
1,

sk
p1

��

qk(sk)


sjEj


min

⇢
1,

sj+1

p1

��

qj+1(sj+1)
<

siEi


min

⇢
1,

sj
p1

��

qj(sj)

=

siEi


min

⇢
1,

sk
p1

��

qk(sk)
<

sjEj


min

⇢
1,

sk
p1

��

qk(sk)
,

which is again a contradiction.

Finally, I can apply these results to show that Rj
i > Rk

i is true for any arbitrary i < j < k.

10



This is because

sjEj


min

⇢
1,

sk
p1

��

qk(sk)


sjEj


min

⇢
1,

sj+1

p1

��

qj+1(sj+1)
<

sj�1Ej�1


min

⇢
1,

sj
p1

��

qj(sj)
< · · ·

<

si+1Ei+1


min

⇢
1,

si+2

p1

��

qi+2(si+2)
<

siEi


min

⇢
1,

si+1

p1

��

qi+1(si+1)
=

siEi


min

⇢
1,

sk
p1

��

qk(sk)

<

sjEj


min

⇢
1,

sk
p1

��

qk(sk)
,

which is coming from the previous arguments and again generates a contradiction. Therefore,

Rj
i > Rk

i and agent i < n� 1 prefers to borrow more from j over k for any i < j < k.

Proof of Theorem 1. By Lemma A3, no agent will borrow from a more optimistic agent. Then,

by the collateral constraint,

X

i2N
dij�d̂

cij  a1j +
X

k2N
djk�d̂

cjk

should hold for any debt level d̂ 2 R+ and for any j 2 N . Therefore, the equilibrium collateralized

debt network is under intermediation order. By Lemma A4, agents’ optimal contract choice is

promising the fundamental value of the asset in lender’s perspective, and the optimization problem

becomes choosing weights of their collateral exposure to di↵erent lenders. Therefore, only the kink

points—s1, s2, . . . , sn—will be traded in any equilibrium. By Lemma A5, agent j is borrowing a

positive amount from j + 1 for any j < n. Hence, any agent who is willing to borrow from agent j

faces the contract price of

qj(d) = qj+1(sj+1) +

Ej


min

(
1,
d

p1

)
�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

Ej


1

p1

� .

Note that the above contract price is the no-arbitrage (or break-even) price for lender j. Hypo-

thetically, if someone wants to borrow from agent 1 promising s1 in t = 1, then agent 1 is willing

to lend q1(s1) to the borrower in t = 0. From agent 1’s perspective, this contract is equivalent to

the payo↵ from purchasing the asset at price of q1(s1). Therefore, the asset price is p0 = q1(s1)

because agent 1 is buying the asset in a positive amount by Lemma A5.

Proof of Corollary 2. By Theorem 1, there are as many as n di↵erent haircuts for the same

collateral asset in any network equilibrium. For the second statement, recall the contract price

11



equation (12)

qj(d) = qj+1(sj+1) +

Ej


min

(
1,
d

p1

)
�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

Ej


1

p1

�

from Theorem 1. Then, the gross interest rate for the contract borrowing from j becomes

sj
qj(sj)

=
sj

qj+1(sj+1) +

Ej


min

(
1,
sj
p1

)
�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

Ej


1

p1

�

The second statement is true if

sj
qj(sj)

<
sj+1

qj+1(sj+1)
(A11)

holds. Then, applying equation (12) on both sides of (A11) yields

sj

qj+1(sj+1) +

Ej


1�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

Ej


1

p1

�

<
sj+1

qj+1(sj+1)

and the following algebra yields

sjqj+1(sj+1) < sj+1qj+1(sj+1) +
sj+1

Ej


1

p1

�Ej


1�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

(sj � sj+1)qj+1(sj+1) <
sj+1

Ej


1

p1

�Ej


1�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

Ej


sj � sj+1

p1

�

Ej


1�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

� <
sj+1

qj+1(sj+1)
.
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Applying equation (12) again to the last inequality becomes

Ej


sj � sj+1

p1

�

Ej


1�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

<

Ej+1


sj+1

p1

�

qj+2(sj+2)Ej+1


1

p1

�
+ Ej+1


1�min

(
1,
sj+2

p1

)
�
@ j+2,j+1(C)

@cj+2,j+1

"
1�

sj+2

p1

#+

1{j+22B(✏)}

� (A12)

and the right-hand side of (A12) is larger than

Ej+1


sj+1

p1

�

Ej+1


sj+2

p1

�
+ Ej+1


1�min

(
1,
sj+2

p1

)
�
@ j+2,j+1(C)

@cj+2,j+1

"
1�

sj+2

p1

#+

1{j+22B(✏)}

� . (A13)

If sj and sj+1 are close enough to each other, sj+2 is small enough, the probabilities of bankruptcy

for j + 1 and j + 2 are similar to each other, and the price is almost always the fair price (for

example, because n is relatively large), then the left-hand side of (A12) is smaller than (A13).

Therefore, the inequality (A11) can hold, and the statement is true.

Proof of Theorem 2. The first three properties come directly from Theorem 1. The fourth

property comes from the indi↵erence equation for borrower j, who has to be indi↵erent between

borrowing cash from i and k if j is borrowing from the two in a positive amount. The fifth property

is simply from the budget constraint and contract prices.

Now I show that an equilibrium satisfying those properties exists in the following steps.

Step 1. (Space of Collateralized Debt Networks) Fix D as a lower triangular matrix with

dij = si for any i > j. Consider a class of networks C such that every C 2 C is a lower triangular

matrix with column sums Ci � Cj for any i < j so that C satisfies the intermediation order for the

fixed D. The set C is a convex and compact subset of the Euclidean space.

Step 2. (Iterative Optimization Mapping) Let V : C ⇥Rn
+ ! C ⇥Rn

+ be a mapping from

a network to networks—that is, agents compute p0, p̃1, q and counterparty risk distribution ! given

the first network C0 and asset holdings a1 in t = 1, and V generates the agents’ optimal network

formation decisions CC0,a1 and asset holdings a1C0,a1 as best responses with the new market clearing

13



price p⇤0. The iterative optimization problem for each agent under V given C0 and a1 is

max
e1j ,{cij}i2N

Ej|C0,a1

2

4

0

@e1j � ✏j + a1jp1 +
X

k<j

cjk min {sj , p1}

�
X

i>j

cij min {si, p1}�
X

i2B(✏)

 ij(C)[p1 � si]
+

1

A sj
p1

3

5
+

s.t.

a1j +
X

k<j

cjk �
X

i>j

cij ,

e0 = e1j �
X

i>j

cijqi|C0,a1(si) +
X

k<j

cjkqj|C0,a1(sj) + a1jp0|C0,a1 ,

A�
X

k<j

a1k � a1j ,

(A14)

where the amount of lending cjk, and the amount of asset purchase a1j are given by the optimization

decisions of the previous agents k < j and the only macro variable p⇤0 is determined endogenously.

V solves the agents’ optimization problem iteratively starting from agent 1. Fixing the previous

agents’ decisions, which is by Lemma 1, automatically satisfies the market clearing condition for

each contract.

Next, I show that this V is a function because the optimal portfolio decision for (A14) is

unique for each agent holding other agents’ decisions fixed. There are two di↵erent dimensions of

choice—how much cash to hold and how to borrow from di↵erent counterparties.

First, each agent decides on how much cash to hold. For any given C0 and a1, Lemma 1 applies

so every agent is holding a positive amount of cash. Decrease in e1j leads to higher expected cash

return because there will be less amount of cash for j under ✏ with liquidity constrained price.

Therefore, for an optimal portfolio of counterparty borrowing, the cash return should equate the

return from intermediation.

Second, each agent decides on how to borrow from di↵erent counterparties. For a given lending

decided by previous agents, an agent’s optimal decision is unique due to linearity of payo↵s—that

is, (qi|C0,a1 � min{si, p1})—and convexly increasing lender default loss of (5). In particular, the

following equation is derived from the first order conditions

Ej

" 
qi|C0,a1 �min{si, p1}� 1 {i 2 B(✏)} @ ij(C)

@c⇤ij
[p1 � si]

+

!
sj
p1

#
� µ = 0,

where µ is the Lagrangian multiplier for the collateral constraint.20 Hence, for the fixed asset and

contract purchase decision, agent 1’s optimal borrowing portfolio should at least equate the cash

return and intermediation return. Fixing up to agent i�1’s decision, agent i’s collateral constraint

20Note that there is no tradeo↵ between cash holdings and intermediation for a fixed purchase decisions.
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is determined and the problem is isomorphic to agent 1’s problem and the solution is unique as

well. Then, the iterative optimization mapping V is a function.

Step 3. (Asset Holdings Determination) The last object is to determine the new asset

holdings vector. First, consider whether the given asset holdings vector a1 clears the market while

satisfying the optimality of each agent. Suppose that agent 1 clears the market and agent 1’s cash

return E1[s/p1] does not exceed the return from leveraged purchase of the asset—that is,

E1

✓
p1 �min{si, p1}� 1 {i 2 B(✏)} @ i1(C)

@c⇤i1
[p1 � si]+

◆
s1
p1

�

p0|C0,a1 � qi|C0,a1
� E1


s1
p1

�
, (A15)

for a i 2 N with c⇤i1 > 0. Then, the given price p0|C0,a1 and asset holdings a1 solves the asset

market clearing condition and optimality, and the asset price remains to be p0|C0,a1 .

Now suppose that inequality (A15) does not hold—that is, even the best portfolio choice of

agent 1 cannot make intermediation return equate agent 1’s cash return. Then, the asset price p⇤0
should be updated to make the inequality (A15) hold. If p⇤0 < q2|C0,a1 , then the price should be

p⇤0 = q2|C0,a1 following Theorem 1, and the asset holdings should be adjusted to a1⇤1 < A to make

(A15) hold as equality—by increasing cash holdings and by decreasing total collateral exposure.

With this residual supply of assets, A� a1⇤1 , the asset price p0 should change to p⇤0 = q2|C0,a1 so

that agent 2 (who is the next natural buyer by Lemma A5) will purchase the assets as well. Agent

2’s problem becomes isomorphic to agent 1’s original problem with the total supply of collateral

A� a1⇤1 + c⇤21. Then, iterate the same procedure and check whether the optimal a1⇤2 clears A� a1⇤1
or not.

To complete the structure of induction, suppose that agent k � 1 solved for the asset purchase

problem. For agent k, the residual asset supply is given by A �
Pk�1

i=1 a1⇤i for a given optimal

portfolio decisions C⇤
1 , C

⇤
2 , . . . , C

⇤
k�1. If the residual asset supply is positive, then the new prices

are p0 = q2 = · · · = qk|C0,a1 . Agent k solves the optimal portfolio problem with the given supply of

collateral A�
Pk�1

i=1

�
a1⇤i � cki

�
. If the return inequality

Ek

✓
p1 �min{si, p1}� 1 {i 2 B(✏)} @ ik(C)

@c⇤ik
[p1 � si]+

◆
sk
p1

�

p⇤0 � qi|C0,a1
� Ek


sk
p1

�
, (A16)

is satisfied, then the market is cleared. Otherwise, adjust the asset price (and k’s contract price

for the promise sk) to p⇤0 that satisfies (A16) with equality. If p⇤0 � qk+1|C0,a1 , the step is done.

Otherwise, update price to p⇤0 = qk+1|C0,a1 , derive a1⇤k , and then iterate problem for agent k + 1

again. There will eventually be a unique solution p⇤0 � 0 that clears the market because the asset

price is decreasing over the procedure while the left-hand side of (A16) is decreasing in the asset

price.

Step 4. (Continuity of Macro Variables) For given contract and asset prices, a change in

borrowing and lending a↵ect both the price fluctuations p̃1 and counterparty risks !. I show that
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both are changing continuously in C0. First, consider a fixed set of liquidity shocks with the same

bankruptcy set B(✏) = B(✏0) for ✏, ✏0 2 E . A change in C increases or decreases price continuously

in (7). Now suppose that for a fixed ✏, B(✏|C) 6= B(✏|C 0) for two di↵erent collateral matrices with

kC � C 0k < �. There will be an additional jump in bankruptcy cost �l(C) for l 2 B(✏|C)\B(✏|C 0).

However, the measure of such liquidity shock realizations is bounded by

G(�) ⌘ max
x2R+


G⌃

✓
x+ � max

i,j2D
dij

◆
�G⌃(x)

�
,

where G⌃ is the distribution function of g⌃ = g1 ⇤ g2 ⇤ · · · ⇤ gn that is the convolution of density

functions gj of liquidity shock for each agent j. Therefore, for any small ◆, there always exists a �

that can make G(�)�l(C) < ◆ because G is di↵erentiable over [0, ✏̄]. Then, in any agent’s perspective,

the expected price is changing continuously over C0. Similarly, !ij(C) and  ij(C) are changing

continuously in C. Therefore, price fluctuations as well as counterparty risks are continuously

changing in C0.

Step 5. (Continuity of V ) Because the distribution of prices and counterparty risks are

changing continuously, the contract prices and expected utility are also changing continuously.

Since the choice set under the constraints are compact and continuous in C and the maximization

problem is a function, the optimal portfolio choices are also continuous in C by Berge’s maximum

theorem. Then, V is also continuous in C.

Step 6. (Fixed Point Theorem) Since V is a continuous mapping that maps a convex

compact subset of the Euclidean space to itself, there exists a C⇤ such that V (C⇤) = C⇤ by the

Brouwer fixed point theorem.

Now the rest of the proof is simply applying the results with q(d) and p0 from Theorem 1 into

market clearing conditions. Also, the nominal wealth is determined by the combination of budget

constraints and market clearing conditions.

Proof of Proposition 3. First, note that any agent j faces higher counterparty risk from agent

i than that from k > i in a network equilibrium, because otherwise j will prefer to borrow more

from agent i rather than borrowing from agent k by Theorem 2 and Lemma A2.

Suppose that agent j diversifies its counterparties across i and k such that j < i < k with

k being Ek [min {sk, p1}� qk(sk)] > 0, which exists by Lemma A5 (e.g. agent n). Note that

Ej [min {sk, p1}� qk(sk)] � Ek [min {sk, p1}� qk(sk)] for any j < k. Thus, a marginal change of

portfolio by shifting the borrowing from i to k will decrease the total counterparty risk of j and the

new allocation is a diversification of agent j from C. Denote this new collateral matrix as C̃ such

that a marginal change from Cj toward C̃j is a diversification of j. Let Cj(t) denote a vector-valued
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function such that

Cj(t) =

0

BBBB@

cj1 + t(c̃j1 � cj1)

cj2 + t(c̃j2 � cj2)
...

cjn + t(c̃jn � cjn)

1

CCCCA
,

therefore, C 0
j(t) is the directional derivative of Cj toward C̃j . Also note that C 0

j(t) is possible

because there are slacks in budget constraints of all agents by Lemma 1.

This marginal change will have four e↵ects on the expected asset price, which is inversely

related to the systemic risk of the allocation. First, the diversification changes the bankruptcy

probability of agent j, who becomes safer after the diversification because of the decrease in expected

counterparty losses. Recall that
P

i2N  ij(C)[p� si]+1{i 2 B(✏)} is the counterparty cost side of

j that determines the likelihood of bankruptcy. Now for the marginal change C 0
j(t) in the network,

there will be a change in counterparty default risk r!jk(Cj) ·C 0
j(t) for any k < j, which is positive

by the definition of diversification of j. This e↵ect will always increase the expected asset price

under any agent’s expectation. Second, the diversification increases the aggregate cash holdings

through decrease in leverage. Again, this e↵ect will increase the expected asset price under any

agent’s expectation. Third, the change will increase the expected nominal wealth of agent k, who is

lending more to j after the diversification. This is because of the changes in the payment received

in t = 1 minus the payment made in t = 0 for agent k is @ckj(sk � qk(sk)) > 0, when p1 � sk.

Therefore, lender k is less likely to go bankrupt whenever p1 � sk.

Fourth, there will be a change in lender default loss functions  i· and  k·. The e↵ect on  il

for any l will be negative as agent j is reducing cij , so the expected price will increase. However,

the e↵ect on  kl for any l with ckl > 0 will be positive as the pool of collateral exposures to

lender k increases. For the optimists l < j, this e↵ect is always smaller than the direct decrease in

counterparty risks of j as they would be borrowing more from j rather than k. For the pessimists

l > j, it requires more detailed comparison to confirm the e↵ect on their expected asset prices. In

particular, I will compare the third e↵ect to the fourth e↵ect for the pessimist agents l > j, and

show that the increase in the expected asset price from the third e↵ect dominates the decrease in

the expected asset price from the fourth e↵ect.

The counterparty risk from k that l > j is facing is El [ kl(C)[p1 � sk]+1{k 2 B(✏)}], which

will increase by El


@ kl(C)

@ckj
[p1 � sk]+1{k 2 B(✏)}

�
. By Assumption 1, this is smaller than

El


@ kl(C)

@ckl
[p1 � sk]+1{k 2 B(✏)}

�
. From (12),

El


sl
p1

✓
[p1 � sk]

+ �
@ k,l(C)

@ckl
[p1 � sk]

+1 {k 2 B(✏)}
◆�

= El


sl
p1

(ql(sl)� qk(sk))

�
,

and El


sl
p1

[p1 � sk]
+
�

> El


sl
p1

(ql(sl)� qk(sk))

�
> El


sl
p1

(ql(sl)�min {sk, p1})
�

holds by
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Lemma A5 and the assumption on k. Then,

El


sl
p1

✓
�
@ k,l(C)

@ckl
[p1 � sk]

+1 {k 2 B(✏)}
◆�

= El


sl
p1

�
ql(sl)� qk(sk)� [p1 � sk]

+�
�

< El


sl
p1

(min {sk, p1}� qk(sk))

�

Therefore, the third e↵ect from diversification @ckj(min {sk, p1} � qk(sk)) dominates the fourth

e↵ect
@ kl(C)

@ckj
[p1 � sk]+1{k 2 B(✏)} under agent l’s expectation.

Proof of Theorem 3. The structure of the proof is as follows. First, I show that the direct

increase in counterparty risk increases the weight of counterparty risk and decreases the benefit of

leverage. Therefore, in the tradeo↵ between counterparty risk and leverage, agents borrow more

from more pessimistic lenders to diversify their counterparties more. This shift will lower the overall

leverage and more so for the optimistic agents as their willingness to pay decreases furthermore

on top of the direct increase of counterparty risk. Lower leverage will make the asset price lower

and increase the overall cash holdings. Finally, agents have even more incentives to diversify their

lenders as prices fluctuate less and the lender default is even more likely and more severe.

Suppose that idiosyncratic counterparty risk increases for everyone (for example, ✓i increases

to ✓̃i > ✓i for every i 2 N). There are two directions of response to this increased counterparty risk

and price fluctuations—increase in cash holdings and increase in diversification. By equation (12),

the function for contract price becomes

qj(d) = qj+1(sj+1) +

Ej


min

(
1,
d

p1

)
�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

Ej


1

p1

�

By Theorem 1, only d = si will be traded for a lending from i 2 N in any equilibrium. Any change

in the terms related to q(sj) has a direct e↵ect on q(si) in linear terms for any i < j by the recursive

equation

q(si) = q(sj) +
j�1X

k=i+1

Ek

"
1�min

⇢
1,

sk+1

p1

�
�

@ k+1,k(C)

@ck+1,k


1� sk+1

p1

�+
1 {k+12B(✏)}

#

Ek


1

p1

� .

As the counterparty risk increases, each agent’s subjective cash return increases. But, the increase

in cash return would be larger for more optimistic agents as

�E1


s

p1

�
> �E2


s

p1

�
> · · · > �En


s

p1

�
,

because more optimistic agents value the asset more given the same liquidity constrained price,
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where � denotes the change of a variable. For any agent k < j, prices relevant to cashflow of

the leveraged contracts are bounded below by the subject belief of the lender k + 1, which is sk+1.

However, the return from cash holdings, skEk [1/p1] is not bounded by any price. The ratio between

the changes of the two terms is increasing in k as the lower bound of the price distribution becomes

smaller—that is,

�Ek

"
1�min

⇢
1,

sk+1

p1

�
�

@ k+1,k(C)

@ck+1,k


1� sk+1

p1

�+
1 {k + 1 2 B(✏)}

#

�Ek


1

p1

�

<

�Ek+1

"
1�min

⇢
1,

sk+2

p1

�
�

@ k+2,k+1(C)

@ck+2,k+1


1� sk+2

p1

�+
1 {k + 2 2 B(✏)}

#

�Ek+1


1

p1

� .

Then, there will be more tightening of interest rates for more optimistic agents as

��q1(s1) > ��q2(s2) > · · · > ��qn�1(sn�1) > ��qn(sn).

Thus, changes in expected payments from a more optimistic lender are lower than the changes

in the amount of lending (price of the contract) from a more optimistic lender. Therefore, agent

i < n� 1 will have a greater decrease in expected return of borrowing from i+1 compared to that

of borrowing from i+ 2 as

��Ri+1
i > ��Ri+2

i ,

for the same Ci, where Rj
i denotes the return of agent i from borrowing from j as

Rj
i ⌘

si
q(si)� q(sj)

Ei

"
min

⇢
1,

si
p1

�
�min

⇢
1,

sj
p1

�
� @ ji(C)

@cji


1� sj

p1

�+
1 {j2B(✏)}

#
.

Hence, the higher leverage of borrowing from a more optimistic lender cannot justify the higher

counterparty risk. Agent i will decrease ci+1,i, and instead borrow from more pessimistic agents,

which implies more links. Also, the reuse of collateral (weakly) decreases because of the decrease

in ci+1,i as well as tightening collateral constraints for the subsequent agents i+ 1, i+ 2, . . . , n.21

21reuse of collateral in a collateral matrix C can be measured by the collateral multiplier defined below—the
volume of total collateral posted divided by the stock of source collateral as

CM(C) ⌘
P

i2N

P
j 6=i cijP

j2N a1
j

.

This collateral multiplier represents the volume of reuse of collateral within the network. For example, if the network C
is a single-chain network using all of the source collateral repeatedly, then the collateral multiplier of C is n�1 because
c21 = c32 = · · · = cn,n�1 = A and CM(C) = (c21 + c32 + · · ·+ cn,n�1)/A = n � 1. If the network C is a completely
diversified multi-chain network, then c21 = c31 = · · · cn1 = n/n�1, c32 = · · · = cn2 = (n/n�1)/(n�2), . . ., c43 = · · · =
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Also, this shift in borrowing pattern on top of the lower contract prices will lower the overall

leverage. More optimistic agents will lend even less as their willingness to pay decreases furthermore

on top of the direct increase of counterparty risk. Lower leverage will make the asset price in t = 0,

p0 lower and increase the overall cash holdings in the economy,
P

i2N e1i . This change will increase

the asset price in t = 1. The increase in expected asset price due to the change in borrowing pattern

will make the price more likely to be greater than the promise. Then, agents are more likely to pay

lender default loss. Agents have even more incentives to diversify their lenders.

So, for the same collateral exposure, ! increases because of heightened idiosyncratic risk,

whereas the leverage rather decreases. This will make agents diversify their borrowing more. The

change in borrowing pattern will make the macro variable (asset price) more stable and rather in-

crease the counterparty risk concern because borrowers are more willing to retrieve their collateral.

Therefore, the shift in the distribution of the asset price makes agents diversify even more in the

new equilibrium.

cn3 = (n/n�1+(n/n�1)/(n�2))/(n�3), . . . cn,n�1 = n/(n�1)+n/((n�1)(n�2))+n/((n�1)(n�3))+n/((n�1)(n�

2)(n� 3))+ · · ·+n/((n� 1)(n� 2) · · · (n�n+2)), with CM(C) = 2

✓
1 + 2 + 2 · 3 + 2 · 3 · 4 · · ·+ 2 · 3 · · · (n� 1)

(n� 1)(n� 2) · · · 2 · 1

◆
<

n�1. This measure is consistent with the velocity of collateral in Singh (2017) and the collateral multiplier in Infante
et al. (2018). The collateral multiplier is also an approximate measure of the average length of the lending chain in
the network (Singh, 2017; Infante et al., 2018).
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B. Omitted Results

This section contains omitted results and proofs mentioned in the main text and the appendix

of the paper.

B.1. Comparative Statics of Payment Equilibrium

The comparative statics here focus on the change in the network structure while holding the

agents’ cash holdings the same. Therefore, I define the concept of cash compensation to fix the

e↵ective cash holdings after the change in the debt matrix. Define ê1 as the equivalent cash compen-

sation of (Ĉ, D̂) from e1, if ê1 compensates the cash holdings for the di↵erence in total payments

as

ê1j = e1j �
X

i2N
(cij � ĉij)dij +

X

k2N
(cjk � ĉjk)djk �

X

i2N
(dij � d̂ij)cij +

X

k2N
(djk � d̂jk)cjk

for all j 2 N .

Proposition B1 (Payment Equilibrium Comparative Statics). Let (m⇤, p⇤) be the payment equi-

librium for a given period-1 economy with collateralized debt network (C,D).

1. Suppose the network changes to (Ĉ,D) that is under intermediation under and ĉij that is less

(greater) than or equal to cij for any i, j 2 N with strict inequality for at least one pair. Also,

suppose that the cash holdings are ê1 > 0, which is an equivalent cash compensation of (Ĉ,D)

from e1 > 0. Then, the expected asset price E[p̃⇤] is greater (less) than or equal to E[p⇤] for

any distribution of s.

2. Suppose the asset payo↵ s̃ is greater (less) than s. Then, the equilibrium price p̃⇤ under s̃ is

greater (less) than p⇤ under s, and the number of bankrupt agents under s̃ is less than that

under s.

3. Suppose the common liquidity shock distribution G becomes G̃ that (is) first order stochasti-

cally dominates (dominated by) G. Then, the expected equilibrium price E[p̃⇤] is less (greater)

than E[p⇤] for any distribution of s.

4. Suppose the cash holdings change to ẽ1 that is ẽ1j is greater (less) than e1j > 0 for every

j 2 N . Then, the expected equilibrium price E[p̃⇤] is greater (less) than or equal to E[p⇤] for

any distribution of s.

Proof of Proposition B1.

1. Consider the case that collateral exposure decreased. First, I show that the cash compensation

does not decrease the expected asset price.
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Case 1. First, consider the agents who only lend and do not borrow from another agent or

purchase the asset. From (2), compensation of cash holdings will always increase the wealth

of the pure lenders as

m̂j(s, ✏) = ê1j � ✏j +
X

i2N
ĉjimin {p, dji}

= e1j � ✏j +
X

i2N
ĉjimin {p, dji}+

X

i2N
(cji � ĉji)dji

> e1j � ✏j +
X

i2N
cjimin {p, dji} = mj(s, ✏),

for the same realization (s, ✏).

Case 2. For the second case, consider an intermediating agent j 2 N who reuses the collateral

and have the collateral constraint binding. By the intermediation order, a decrease in lending

should always correspond to a decrease in borrowing. Therefore, the compensation does not

decrease the wealth of a purely intermediating agent as

m̂j(s, ✏) =ê1j � ✏j + a1jp+
X

i2N
(ĉjimin{p, dji}� ĉij min{p, dij})�

X

i:mi<0

 ij(Ĉ)[p� dij ]
+

=e1j � ✏j + a1jp+
X

i2N
(ĉjimin{p, dji}� ĉij min{p, dij})�

X

i:mi<0

 ij(Ĉ)[p� dij ]
+

�
X

i2N
(cij � ĉij)dij +

X

i2N
(cji � ĉji)dji

�e1j � ✏j + a1jp+
X

i2N
(cjimin{p, dji}� cij min{p, dij})�

X

i:mi<0

 ij(C)[p� dij ]
+,

where the last inequality holds by the intermediation order.

Case 3. For the last case, consider an agent j 2 N who is either purchasing the asset (a1j > 0)

or intermediating but the collateral constraint of j is not binding. Agent j could possibly

have lower cash holdings after the cash compensation in a state that the market price for the

uncertainty realization (s, ✏) resulted in p1 < dij for some i 2 N . However, such borrowers

are defaulting in such states anyway, so the cash transfer either does not a↵ect the total cash

holdings or, rather, increases the total cash holdings by preventing j’s lenders from going

bankrupt. Finally, this lowering of mj(p|s, ✏)’s wealth could make agent j more likely to go

bankrupt and inflict lender default loss to Vj . However, by the intermediation order, agents

who borrows from agent j shall default on their debt whenever agent j defaults. Therefore,

the increased probability of j’s bankruptcy does not lead to an increase in expected lender

default.

Finally, I show that the new collateral matrix will increase the expected asset price by lowering

the counterparty contagion. Since the coe�cients on prices are lower, agent j’s wealth is less

susceptible to price change. Furthermore, j faces lower lender default loss by assumption 1
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and the same or less probability of second-order bankruptcy for the same state realizations

by Proposition 2. Then, both the price and counterparty channels of contagion decrease, and

there will be less states with underpricing so that E[p̃⇤] � E[p⇤] for any distribution of s.

Now consider the opposite case, increase in collateral exposure. The reverse cash compensa-

tion decreases the ex post wealth of the pure lenders. The cash compensation does not a↵ect

other agents as in the first part of the proof. Finally, the new collateral matrix increases the

counterparty contagion as the coe�cients for lender default  ij(C) weakly increase for any

i, j 2 N . Therefore, the expected price decreases for any distribution of s.

2. If the equilibrium price was p < s in the original period-1 economy, then the increase in s does

not have any e↵ect. Now consider the case that p = s. From (8), an increase in s can increase

p. Suppose that the bankruptcy set remains the same as B(✏|s̃) = B(✏|s). Since the maximum

payment equilibrium is unique by Proposition 1, there is no need to consider the case with

the bankruptcy set larger than B(✏|s) if there is an equilibrium with B(✏|s̃) ✓ B(✏|s). If the
equilibrium price remains the same as p = s, then the same market clearing condition holds

only under (3) and this is the (trivial) new equilibrium with the same bankruptcy set. Finally,

the only case left is the equilibrium with price p̃ > s. If agents trade in p̃, mj(p) increases for

each j 2 N by Lemma A1. Therefore, any agent who was not bankrupt under s does not go

bankrupt under s̃ as well so B(✏|s̃) ✓ B(✏|s). By (3), the equilibrium price increases (up to

s̃). The other direction follows the same argument.

3. The result follows immediately from Proposition 2.

4. For each realization of s and ✏, mj(p|s, ✏) only increases (decreased) by ẽ1j � e1j for any j 2 N .

Therefore, the equilibrium price increases (decreases) and the size of the bankruptcy set goes

the opposite direction, amplifying the increase (decrease) by Proposition 2.

Now, I show how diversification of counterparties of an agent a↵ects network contagion.

Proposition B2 (Diversification Externality). Let (N,C,D, e1, a1, ·, ·, ) be a period-1 economy,

and
@ ij(C)

@cik
= 0 and dij = dik for any i, j, k 2 N . Suppose C̃ is a diversification of agent j < n

from C, and ẽ1 is the equivalent cash compensation of (C̃,D) from e1. Then, the expected payment

equilibrium price Ei[p̃⇤] under (N, C̃,D, ẽ1, a1, ·, ·, ) is greater than Ei[p⇤] of the original economy

for any agent i who is not lending to j.

Proof of Proposition B2.

If j = n� 1 or cij > 0 for only one i 2 N , the statement holds immediately by statement 1 of

Proposition B1 because the change is equivalent to decreasing the collateral matrix with equivalent

cash compensation.
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Now suppose j < n � 1 and there are i, k with i 6= k such that cij , ckj > 0. If the change is

simply decreasing both cij and ckj simultaneously, then again the statement holds immediately by

statement 1 of Proposition B1. Therefore, the only cases left to consider are the cases with cij and

ckj changing to di↵erent directions.

Suppose c̃ij < cij and c̃kj > ckj without loss of generality. There will be three e↵ects to consider:

the direct counterparty e↵ect, the cash holdings e↵ect, and the intermediation e↵ect.

First, !jl will decrease for any l < j by the definition of diversification of agent j. This will in

turn decrease the second-order bankruptcy of agent l and l’s counterparties, so !ml decreases for

m such that l 2 Vm.

Second, there will be no di↵erence in counterparty risks and payments for agents other than

the lenders to agent j in any payment equilibrium for a given (s, ✏). This is because of cash

compensation ẽ1 and the same face value of the debt for common lenders dkj = dkl for any j, k, l. If

borrower j does not default, the total cash payment plus cash holdings for agent k will be the same

as in the original economy because e1k � ẽ1k = (c̃kj � ckj)dkj . If the borrower j defaults, then the

lender k may have lower wealth after the payment because e1k � ẽ1k = (c̃kj � ckj)dkj > (c̃kj � ckj)p.

However, any agent l who is borrowing from k would have defaulted as well because p > dkj = dkl.

Therefore, the increased likelihood of lender bankruptcy is irrelevant to other agents because there

will be no relevant lender default losses for them.

Third, the possible change in intermediation pattern rather (weakly) increases equilibrium prices

for any (s, ✏) realized. If none of the collateral constraints are binding after the change to C̃, then

there will be no additional e↵ect to consider. Now suppose that the collateral constraint for agent

i is binding because
P

l 6=j cil + cij >
P

l 6=j cil + c̃ij . Then, agent i must borrow less from the set of

lenders Vi. This additional change is equivalent to decreasing the collateral matrix with equivalent

cash compensation and only increases equilibrium price by statement 1 of Proposition B1 again.

Hence, the change in the intermediation pattern will only increase the equilibrium price.

Finally, all these arguments for two agents i, k 2 Vj can be applied to any other arbitrary set of

agents lending to j. Therefore, the expected equilibrium price for agents other than agents lending

to j will be larger than the original expected equilibrium price.

Figure B1 shows the numerical results that demonstrate comparative statics of the payment

equilibrium in t = 1. Each panel of figure B1 shows the monotonic e↵ect of the comparative static

result.

Finally, I discuss the absence of comparative statics for many other possible directions that

are common in the financial networks literature. The main reason is the complexity of the multi-

dimensional collateralized debt networks. For example, one can consider an increase in intercon-

nectedness by increasing the number of counterparties of an agent j 2 N while fixing the total

amount of debt for agent j. The resulting price distribution depends on the exact contract terms

dij for each i 2 N , the holdings of cash and asset (e1i , a
1
i ), and the liability structure [cki, dki]k2N

for each counterparty i 2 N . If agent j was exclusively connected to an agent with very low prob-

ability of bankruptcy already, increasing the counterparties may rather increase the total expected
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Figure B1: Numerical comparative statics results.

Note: Vertical axis for each graph represents the expected asset price of an agent and horizontal axis of each graph

represents the level of parameter value for each comparative statics. Each line represents the subjective expected

asset price of an agent. See the online appendix for the details of the numerical exercise.

counterparty risk of j. Therefore, there is no single su�cient statistic such as a single centrality

measure that summarizes the systemic risk of a collateralized debt network.

B.2. Pareto Ine�ciency of Network Equilibrium

In the main text, I showed that there are externalities of diversification in terms of lowering

systemic risk under any agent’s belief. The next result shows that the allocation in a network

equilibrium can be improved by diversification and appropriate cash transfers. The only di↵erence

from the main setting is that I assume no cross-exposure e↵ects on lender default losses for this

result.

Proposition B3 (Lack of Diversification). Assume that
@ ij(C)

@cik
= 0 for any distinct i, j, k.

Suppose that (C,D, e1, a1, p0, p̃1, q) is a network equilibrium and there exists an agent j > 1 who

is borrowing from more than two di↵erent lenders. Then, there exists an allocation that Pareto

dominates the equilibrium allocation by diversifying the counterparties of agent j with cash transfers.

Proof of Proposition B3. Suppose that agent j is borrowing from more than two distinct
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lenders. By 4 of Theorem 2 and Lemma A2 in the appendix,

sj
q(si)

Ej

"
min

⇢
1,

si
p1

�
+

@ ij(C)

@cij


1� si

p1

�+
1 {i 2 B(✏)}

#

=
sj

q(sk)
Ej

"
min

⇢
1,

sk
p1

�
+

@ kj(C)

@ckj


1� sk

p1

�+
1 {k 2 B(✏)}

#
(B17)

for any i < k with cij , ckj > 0. Agent j faces higher counterparty risk from agent i, because

otherwise agent j will prefer to borrow more from agent i by Lemma A5. Thus, a marginal change

of portfolio by shifting the borrowing from i to k will decrease the total counterparty risk of j.

Then, there exists a direction from Cj such that a marginal change of Cj is a diversification of j.

Consider such a marginal change from Cj toward C̃j , which is a diversification of agent j from Cj .

Let Cj(t) denote a vector-valued function such that

Cj(t) =

0

BBBB@

cj1 + t(c̃j1 � cj1)

cj2 + t(c̃j2 � cj2)
...

cjn + t(c̃jn � cjn)

1

CCCCA
,

therefore, C 0
j(t) is the directional derivative of Cj toward C̃j . Also note that C 0

j(t) is possible

because there are slacks in budget constraints of all agents by Lemma 1.

From (B17), agent j’s marginal cost of adjustment is

Ej

2

6666666666664

s

p1

0

BBBBBBBBBBBB@

min{s1, p1}
q1(s1)

...
min{sj+1, p1}
qj+1(sj+1)

...
min{sn, p1}

qn(sn)

1

CCCCCCCCCCCCA

3

7777777777775

· C 0
j(t) +

0

BBBBBBBBBBBB@

@ ij(C)

@c1j(t)
...

@ j+1,j(C)

@cj+1,j(t)
...

@ nj(C)

@cnj(t)

1

CCCCCCCCCCCCA

�

0

BBBBBBBBBBBB@

!1j(s1)

q1(s1)
...

!j+1,j(sj+1)

qj+1(sj+1)
...

!nj(sn)

qn(sn)

1

CCCCCCCCCCCCA

· C 0
j(t) = 0,

which is zero because of the optimality condition of agent j.

Recall that
P

i2N  ij(C)[p� si]+1{i 2 B(✏)} is the counterparty cost side of j that determines

the likelihood of bankruptcy. Now for the marginal change C 0
j(t) in the network, there will be a

change in counterparty default risk r!jk(Cj)·C 0
j(t) for any k < j, which is positive by the definition

of diversification of j.

By Lemma 1, the cash equivalent change in utility for agent j � 1 is

 j,j�1(C)r!j,j�1(Cj) · C 0
j(t)

Ej�1


s

p1

�
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which is the cash equivalent compensation (willingness to pay) from j � 1. For agent j � 2,

 j,j�2(C)r!j,j�2(C) · C 0
j(t) + j�1,j�2(C)r!j�1,j�2(C) · C 0

j(t)

Ej�2


s

p1

�

is the first- and second-order e↵ect to j � 2 that are all positive since j � 1 only becomes safer as

well. Similarly, the total cash equivalent compensation from agent 1 through j�1 for diversification

of j will be

n�jX

k=1

j�k�1X

i=0

 j�i,k(C)r!j�i,k(C) · C 0
j(t)

Ek


s

p1

� > 0,

that is again positive by the definition of diversification and its higher-order e↵ects. Finally, the

diversification with the market price of contracts will make lenders indi↵erent because the lenders

are indi↵erent between lending more or lending less by Lemma 1 and Theorem 1. Therefore, every

agent is receiving payo↵s better than or equal to the payo↵s of the original equilibrium after the

diversification with cash transfers.

B.3. Counterparty Irrelevance

If there is no lender default loss—that is,  ij(C) = 0 for any C and i, j 2 N—then the payment

equilibrium is unique because there will be no jumps in the aggregate wealth. Also, without a

default loss, a change in counterparty connections does not matter as long as the total borrowing

and lending amount remain the same. The following proposition states this property.

Proposition B4 (Counterparty Irrelevance). If there is no lender default loss, then the pay-

ment equilibrium is unique for any given network. Furthermore, two networks (C,D) and (Ĉ, D̂)

with the same indegrees and outdegrees—that is, 1(C�D) = 1(Ĉ�D̂) and (C�D)1 = (Ĉ�D̂)1—will

have the same payment equilibrium.

Proof of Proposition B4. For a fair price, there exists a unique equilibrium price no matter what

happens in shocks and bankruptcies. Now focus on liquidity constrained prices. When  ij(C) = 0

for any i, j 2 N, C � 0, equation (3) becomes

X

j2N
e1j =

X

j2N
min

(
✏j , e

1
j + a1jp�

X

i2N
cij min{p, dij}+

X

k2N
cjk min{p, djk}

)
,

and by intermediation order, the right-hand side is increasing in p. Also the right-hand side is

bounded below by
P
j2N

min{✏j , e1j}, when p = 0. By intermediate value theorem, there exists a

unique equilibrium price p between [0, s] that satisfies the market clearing condition above.

For the second statement of the proposition, first note that the sum of non-negative nominal
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wealth with no lender default loss is

X

j2N
[mj(p)]

+ =
X

j2N
e1j +

X

j2N
a1jp

�
X

j2N
min

(
✏j , e

1
j �

X

i2N
cij min{p, dij}+

X

k2N
cjk min{p, djk}

)
,

which can be re-written as the sum of indegrees and outdegrees as below.

X

j2N
[mj(p)]

+ =
X

j2N
e1j +Ap�

X

j2N
min

(
✏j , e

1
j �

X

i2N
cijxij +

X

k2N
cjkxjk

)
,

where xij = min{p, dij}, and the equation will have the same value with a network with

X

i2N
cijxij =

X

i2N
ĉij x̂ij

X

k2N
cjkxjk =

X

k2N
ĉjkx̂jk,

so networks (C,D) and (Ĉ, D̂) have the same equilibrium price and final asset holdings.

This proposition shows the necessity of a lender default loss (or any counterparty risk) in order

to generate meaningful interaction among agents. Because of the absence of a default loss, an

agent’s individual connection does not matter as long as the total borrowing and lending are the

same. The result is not so surprising since the main reason for using collateral is to insulate the

lender from the counterparty risk.

28



C. Details of the Numerical Exercises

C.1. Equilibrium Search Algorithm

The following algorithm shows how to solve the payment equilibrium in quantitative analysis

under the maximum equilibrium selection rule.

0. Set B(0)(✏) = ?. Start with step 1.

1. For any step k, given B(k�1), compute p(k) that satisfies equation (8).

2. For given p(k), compute mj(p(k)) with given B(k�1) and update B(k).

3. If B(k�1) = B(k), then it is the maximum equilibrium. Otherwise, move to the next step k+1

and repeat procedures 1 and 2.

This algorithm, which is an extension of the algorithm of Eisenberg and Noe (2001), is guar-

anteed to find the maximum payment equilibrium price of the given network. Also, the algorithm

finishes within n steps because the second-order bankruptcy (cascades) could only occur at the

maximum of n� 1 times.

C.2. Parameter Values

For the comparative statics in figure B1, I use n = 10 agents with the vector of beliefs on the

asset payo↵ as (s1, s2, . . . , s10) = (20, 19, 18, . . . , 11). The baseline parameters are as follows. Each

agent has the initial endowment of cash e0 = 5000. The total supply of assets is A = 5000. The

lender default loss function is

 ij(C) =
cijP

k2N cik

✓P
k2N cik
A

◆2

.

The common liquidity shock distribution is a log-normal distribution with the mean of 6 and

standard deviation of 5. I sample 5000 joint realizations from this distribution. The probability of

receiving a liquidity shock is ✓i = 1 for any agent i 2 N .

Following Theorem 1, the contract matrix D is fixed as dij = si for any j < i 2 N and 0

otherwise. For the comparative statics, I used the collateral matrix C of the single-chain network

as the baseline collateral matrix. The baseline case is the collateral matrix with the maximum

collateral exposure. Therefore, ci,i�1 = 5000 for any 1 < i  n and cij = 0 if j 6= i � 1. Other

matrices such as a multi-chain network show similar patterns.

For each comparative statics, each line represents the subjective expected price of each agent

starting from agent 1 to agent 10. Each subjective expected price is computed by obtaining the

simulated expectation over 5000 realizations with the respective s value for each given subjective

belief. For example, the asset price can be up to 20 under agent 1’s belief if there is no significant
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liquidity shock, but the asset price under agent 2’s belief can only be up to 19 for the same liquidity

shock realization.

For the change in collateral exposure, I fixed every parameter as the baseline case except for the

collateral matrix C. I started with the reduced collateral exposure value such that ci,i�1 = 2500

for any 1 < i  n and cij = 0 if j 6= i� 1. The horizontal axis of the upper-left panel of figure B1

is the multiplier of the given collateral matrix. Thus, 2 is the case of the collateral matrix with the

maximum collateral exposure.

For the change in mean of liquidity shocks ✏, I fixed every parameter as the baseline case except

for the mean of the log-normal distribution of the common liquidity shock G. The horizontal axis

of the upper-right panel of figure B1 is the mean starting from 5 to 7.

For the change in probability of liquidity shocks ✓, I fixed every parameter as the baseline case

except for the probability ✓ of receiving a liquidity shock drawn from the common distribution G.

The horizontal axis of the lower-left panel of figure B1 is the probability starting from 0 to 1.

For the change in cash holdings e1 of each agent, I fixed every parameter as the baseline case

except for the common cash holdings e1 of each agent. The horizontal axis of the lower-right panel

of figure B1 is the amount of cash holdings starting from 1000 to 10000.

For the change in the degree of diversification of agent 3, I fixed every parameter as the baseline

case except for the collateral matrix C. First, I define the collateral matrix with full diversification

of agent 3’s collateral exposure as C̃. Under C̃, agent 3 is equally exposed to agents 3, 4, and so

on. Further, I adjust the collateral matrix to satisfy the collateral constraint of each subsequent

agent. The adjustment is done by scaling down each collateral exposure starting from agent 4 if

the collateral outflow from an agent exceeds the collateral inflow to the agent. Then, I compute a

convex combination of C and C̃ with the weight of C̃ as the degree of diversification. The horizontal

axis of the top-right panel of figure B1 is this weight of C̃ for the convex combination of collateral

matrices used in each simulation.
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