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Abstract

Lender default arises with reuse of collateral, which is common in collateralized debt markets,

because bankrupt lenders can default on their obligation to return the collateral and borrowers

can su↵er additional losses. I develop a network model with both borrower and lender defaults

to analyze systemic risk in collateralized debt markets. The model endogenizes asset prices,

leverage, and network formation simultaneously. The main mechanism of network formation is

the borrowers’ tradeo↵ between counterparty risk and leverage. Thus, a policy that eliminates

the counterparty risk concern may have a hidden side e↵ect to systemic risk. This side e↵ect

is novel because it does not exist if one of asset price, leverage, or network were exogenously

given.
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1. Introduction

Reuse (re-hypothecation) of collateral by the lender of a contract is very common in the mar-

ket of collateralized debt, such as repurchase agreement (repo) contracts and derivatives (Fuhrer
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et al., 2016; Infante et al., 2018; Jank et al., 2021). The collateralized debt market is crucial to the

whole financial system as the 2007-2009 financial crisis demonstrated (Gorton and Metrick, 2012;

Copeland et al., 2014; Martin et al., 2014), and policy makers raised financial stability concerns

related to the reuse of collateral in the market (Financial Stability Board, 2017). Therefore, un-

derstanding the underlying mechanism of the reuse of collateral is important in monitoring and

mitigating the potential systemic risk stemming from the collateralized debt market.

The lender default problem also arises with reuse of collateral (Infante and Vardoulakis, 2021).

A lender may be unable to return the reused collateral to the original borrower if the lender is

under bankruptcy. For example, all of Lehman Brothers’ assets, including borrowers’ collateral,

were frozen under the bankruptcy procedure in 2008. Many borrowers had to overcollateralize

their positions to protect the lender (Lehman) in case of borrower default (Scott, 2014). While

overcollateralization secured the lender’s position, it exposed the borrowers to losses when they

could not recover their collateral. The borrowers did not know when their collateral would be

returned to them, nor did they know how much they would recover from the bankruptcy process,

and they paid a sizable cost throughout the recovery (Fleming and Sarkar, 2014). Another example

is MF Global, a broker-dealer that went bankrupt in 2011. The bankruptcy procedure took five

years to resolve all the borrowers’ claims. The borrowers had to go through the lengthy process

with considerable costs to stay involved and could not access their collateral assets (SIPC, 2016).

Based on these motivating facts, the research questions of this paper are the following: How do

participants of the collateralized debt market borrow from each other when they can reuse collateral

and default as lenders? How is the underlying systemic risk determined? How do the structure

of the market and systemic risk change under di↵erent market conditions, including a change in

regulation?

The main contribution of this paper is the development of a new model that sheds light on

these questions. I develop a model that combines the frameworks of financial network and general

equilibrium to fill in the gap in the literature. A debt network keeps track of how agents borrow

from each other as well as how the collateral flows through the reuse of collateral. The general

equilibrium forces determine asset prices and relevant returns of each investment option for agents.

Therefore, the model determines asset prices, leverage, and network formation all endogenously.

This paper is the first attempt to endogenize all three of them simultaneously. The main mechanism

and policy implication of this paper do not exist if one of them were exogenous.

This combination of financial network and general equilibrium is important in analyzing the

contagion and amplification of a shock in the collateralized debt market. A typical collateralized

debt contract takes the form of a one-to-one interaction between two counterparties—a borrower

and a lender. Thus, a collateralized debt network, the collection of such one-to-one relationships,

has two transmission channels of shocks—the price (of the collateral) channel and the counterparty

channel. Therefore, the interaction of the two channels of contagion is essential in understanding

the systemic risk in the collateralized debt market.

For example, the collapse in the prices of subprime mortgages in 2008 had a direct e↵ect on many

2



financial institutions that held related assets either from outright purchase or as collateral, but the

resulting bankruptcy of the Lehman Brothers, which spread the losses to Lehman’s counterparties,

exacerbated the initial shock (Singh, 2017). These counterparty losses triggered fire sales of assets,

which made prices decline even further (Demange, 2016; Duarte and Eisenbach, 2021; Duarte

and Jones, 2017). Even U.S. Treasury securities, one of the safest assets and most commonly

used collateral in the world, can experience a price decline when there is a crash such as the

COVID-19 pandemic.1 Therefore, a model that incorporates the interaction between price and

counterparty channels is necessary to capture the full picture of the crisis in collateralized debt

markets (Glasserman and Young, 2016).

The model is as follows. There are n agents who trade an asset that can be used as collateral

in a competitive market. Agents trade because they disagree on the fair value of the asset ex

ante. Agents enter into bilateral contracts specifying the amounts of debt and collateral. The

lender of a debt contract can reuse the collateral to borrow money from someone else. A network

of the amounts of debt and collateral represents all the collateralized debt contracts. Agents are

subject to liquidity shocks before paying back their debt. Because of liquidity shocks, agents may

go bankrupt. Both borrower and lender defaults are incorporated in the model. In particular, when

the lender fails to return the collateral, the borrower has to go through a costly process to recover

the collateral from the lender. This lender default generates additional propagation through a

counterparty channel, whereas price changes in the asset market a↵ect agents’ net worth as a price

channel.

The main insight of the model is that network formation is based on the tradeo↵ between

counterparty risk and leverage. Borrowers would prefer to maximize their (contract-level) leverage

(or minimize margin) to maximize their return. If there is no lender default loss, then agents who

purchase the asset would borrow from the most favorable lender to them. Then, the lenders of

the contracts would reuse the collateral to borrow from their own most favorable lenders, and the

lenders’ lenders would do the same, and so on. Therefore, a single-chain network—that is, agent

j borrows exclusively from agent j + 1 for all j < n � 1 as in figure 1— is formed endogenously.

However, if there are lender default risks, borrowers would diversify their lenders and form a

multi-chain network as in figure 2. The tradeo↵ between counterparty risk and leverage exists

because borrowers have to deal with more restrictive lenders, who lend less for the same collateral.

Therefore, an increase in counterparty risk leads to an increase in the number of counterparties and

a decrease in leverage and reuse of collateral, because the borrowers borrow more directly from the

ultimate lenders rather than indirectly through intermediaries.

The model also shows that there is an amplifying interaction between the two channels of

contagion. Bankruptcy of an agent a↵ects its counterparties through the counterparty channel.

Asset prices also go down because of these counterparty losses. Then, all agents in the market

experience mark-to-market losses in their balance sheet through the price channel. This price

decline can lead to more bankruptcy causing an increase of the counterparty channel of contagion

1In the inter-dealer repo markets, even U.S. Treasuries have positive haircuts (Duarte and Eisenbach, 2021).
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Figure 1: Single-chain network
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Figure 2: Multi-chain network

that feeds back into the price channel amplification again and so on. Therefore, a change in an

agent’s behavior can have an amplified e↵ect on all agents in the market.

There are positive externalities from diversification of counterparties. Diversification reduces

not only individual counterparty risk, but also systemic risk by limiting the propagation of shocks

and price volatility due to lower leverage. If an intermediary becomes safer, then its borrowers

become safer as well. In addition, a lower level of debt leads to lower price volatility, making each

agent’s balance sheet more stable.

The main policy implication of this paper is that a policy change mitigating counterparty losses

can exacerbate the diversification externality problem. For example, mandating all trades to be

cleared by a central counterparty (CCP) could have an unexpected side e↵ect. The policy change

will distort the tradeo↵ between counterparty risk and leverage by eliminating or mitigating the

counterparty risk concerns. Therefore, agents will form a single-chain network, which maximizes

leverage, reuse of collateral, and systemic risk. Although a policy change can bring many positive

e↵ects that reduce systemic risk, a countervailing force can be caused by the endogenous network

responses. Therefore, this result highlights the importance of regulating counterparty exposure

concentration such as the single counterparty credit limit rule of the Dodd-Frank Wall Street

Reform and Consumer Protection Act.

These results would not exist if one of leverage, asset prices, or network were exogenous, because

then there would be no tradeo↵ between counterparty risk and leverage. Also, a simple three-agent

model cannot capture the e↵ect of diversification of a lender properly, as there are no lenders to

diversify across. Hence, this paper finds a novel feature of endogenous response in the network

structure related to systemic risk.

Finally, the predictions of the model align well with the empirical observations in the literature,

filling in the gap between the theoretical literature and the recent empirical literature. First, the

existing models focusing only on borrower default predict a strong negative relationship between

haircuts and interest rates, because a lower haircut implies higher borrower default risk. In contrast,

the data do not find a strong significant relationship between the two (Baklanova et al., 2019). In

my model, the relationship can be weak because of high lender default risk, which lowers the

incentives of the borrower to borrow at a high haircut or high rate. Second, the standard models

predict a single haircut used in the market for the same asset. However, the data show that multiple

haircuts are used for the same CUSIP (Committee on Uniform Security Identification Procedures)

level asset (Baklanova et al., 2019). In my model, there can be multiple haircuts for the same
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asset because they are traded across di↵erent counterparties multiple times. Third, the existing

models have preset roles in reuse of collateral and do not predict how the portfolio of counterparties

is determined. The pattern of reuse changes with the underlying market conditions in empirical

observations (Financial Stability Board, 2017; Singh, 2017; Infante and Saravay, 2020; Jank et al.,

2021). Furthermore, the debt network changed significantly after the Lehman bankruptcy over

both the short and long term (Craig and Von Peter, 2014; Eren, 2015; Sinclair, 2020). The tradeo↵

between the counterparty risk and leverage in my model naturally predicts such changes under

di↵erent market conditions. Moreover, high levels of reuse would lead to a higher volatility of rates

in my model as observed in the data (Jank et al., 2021).

1.1. Relation to the Literature

The first contribution of this paper is developing a model that incorporates both the counter-

party and price channels of contagion with an endogenous network formation, which is the first

attempt in the literature. No major institution failed because of losses on its direct exposures to

Lehman; thus, developing a model that combines di↵erent shock transmission channels in financial

networks is important (Upper, 2011; Glasserman and Young, 2016). The interaction of the two

channels leads to a novel network formation mechanism that is new to the literature.

The counterparty contagion through financial networks in this paper is based on the insights

from the literature following Eisenberg and Noe (2001) and Acemoglu et al. (2015). This paper also

incorporates discontinuous jumps in the payo↵s in case of bankruptcy as in Elliott et al. (2014). The

endogenous network formation is based on portfolio decisions similar to Allen et al. (2012). The

insight of externalities coming from counterparty risk exposure is similar to Zawadowski (2013).

This paper contributes to the literature by incorporating externalities from network formation.

The endogenous price determination in this paper is based on the literature on general equi-

librium with collateralized debt. The literature following Geanakoplos (1997) was developed in

Geanakoplos (2003), Geanakoplos (2010), Simsek (2013), and Fostel and Geanakoplos (2015), which

introduce models with collateral, explore how heterogeneity can generate collateralized debt and

trade, and show how endogenous (contract-level) leverage is determined. In particular, Gottardi

and Kubler (2015) and Geerolf (2018) introduce pyramiding—that is, using a contract backed

by collateral as collateral—which is similar to the reuse of collateral in this paper. This paper

contributes to this literature by linking these features into the network formation mechanism and

analyzing the e↵ect of counterparty risks instead of treating all trades as fully diversified anonymous

trades.

In particular, cash holdings and endogenous asset prices in this paper counteract the incentives

to correlate payo↵s. Many financial network models have an equilibrium in which agents have

overlapping asset and counterparty portfolios or a common correlation structure (Allen et al., 2012;

Cabrales et al., 2017; Elliott et al., 2021; Erol and Vohra, 2020; Jackson and Pernoud, 2021). In such

models, agents have strong incentives to correlate their payo↵s with those of their counterparties,

because they can enjoy better payments from their counterparties when they are solvent while
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being insolvent when they expect lower payments from others. However, this paper introduces

an opposing force to such incentives, which is the marginal utility of cash coming from general

equilibrium forces. Agents do not hold correlated portfolios because, if everyone else collapses,

then the one who survives can make a huge return by purchasing all the remaining cheap assets.

The feedback from agents’ wealth to collateral price is crucial in this paper. Other papers

consider the interaction between counterparty and price channels, such as Capponi and Larsson

(2015), Cifuentes et al. (2005), Di Maggio and Tahbaz-Salehi (2015), Gai et al. (2011), Ghamami

et al. (2021), and Rochet and Tirole (1996). This paper di↵ers by incorporating an endogenous

network formation with the price channel for the underlying collateral.

Allen and Gale (2000), Babus (2016), Babus and Hu (2017), Babus and Kondor (2018), Brusco

and Castiglionesi (2007), Capponi and Larsson (2015), Chang and Zhang (2021), Elliott et al.

(2021), Erol and Vohra (2020), Farboodi (2017), and Freixas et al. (2000) studied endogenous

network formations in financial networks. They consider the endogenous network structure and

possible ine�ciencies and systemic risks. Unlike the models in these papers, the network formation

in this paper is based on general equilibrium forces rather than game-theory-based forces such as

pairwise stability.

This paper is also related to the literature on lender default that shows how collateral can act

as a contagion channel to the borrower. Gottardi et al. (2019), Infante and Vardoulakis (2021),

Infante (2019), and Park and Kahn (2019) investigated the lender default problem in collateralized

lending and relevant deadweight loss. This paper incorporates the lender default feature into the

endogenous network structure. Also, the same collateral can be reused for an arbitrary number of

times in contrast to other models of reuse of collateral.

1.2. Motivating Example

Figure 3 is an example of the flow of cash and collateral for a collateralized debt contract. The

left figure visualizes the transaction at t = 0, where borrower b posts c amount of collateral to the

lender l and l lends cash in the amount of cq(d) to b. If the price of the asset p1 is greater than the

promise d at t = 1, then b pays the promise and l returns the collateral, as seen in the top-right

figure. If the price p1 is lower than d, then the borrower defaults and l keeps the collateral, as in

the middle-right figure, assuming nonrecourse debt for simplicity. If the lender l is bankrupt, then

b su↵ers cash loss in retrieving collateral even when b pays the promised amount of cd, as in the

bottom-right figure. This lender default loss is increasing in b’s collateral exposure to l.

Reuse of collateral is prevalent in a wide variety of collateralizable assets (Singh, 2017; Infante

and Vardoulakis, 2021). In reality, borrowers prefer to allow reuse of their collateral. Even after

the fall of the Lehman Brothers, most borrowers continued to allow reuse of their collateral (Singh,

2017) because reuse of collateral generates more liquidity for the borrowers themselves.

Figure 4 exemplifies the e↵ect of reuse of collateral. Now suppose that there is an intermediary

i, all three agents have the same cash endowment of 50, and they have di↵erent beliefs over the

fundamental value of the asset as sl = 40, si = 80, and sb = 100, respectively. Also, suppose
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l b

cash cq(d)

collateral cp0

t = 0

l b

cash cd

collateral cp1
t = 1, without borrower default

l b

collateral cp1

cash cq(d)

collateral cp1

t = 1, with borrower default

l b

collateral (cp1) ?

cash (cd)

t = 1, with lender default

Figure 3: Flows of cash and collateral for three cases

Note: The blue dashed arrows represent flows of cash, and the red arrows represent flows of collateral. The left figure

shows the flows in t = 0. The top-right figure shows the flows in the case without borrower default in t = 1, the

middle-right figure shows the flows in the case with borrower default in t = 1, and the bottom-right figure shows the

flows in the case with lender default in t = 1.

l

sl = 40
e0 = 50

i

si = 80
e0 = 50

b

sb = 100
e0 = 5050

1 asset

l

sl = 40
e0 = 50

i

si = 80
e0 = 50

b

sb = 100
e0 = 5040 80

1 asset1 asset

Figure 4: Example of e↵ect of reuse

Note: The blue dashed arrows represent flows of cash, and the red arrows represent flows of collateral. The top figure

represents the case of borrowing 50 from i, and the bottom figure represents the case of borrowing 80 from i, who

reuses the collateral and borrows 40 from l again.

there is no risk in t = 1 and the interest rate is zero. Borrower b is the most optimistic agent

and would like to buy as much of the asset as possible. Agent b can increase the amount of asset

purchase by leveraging more. When borrowing from lender l, agent b would not o↵er a promise

above 40, because agent l believes the asset is worth 40, so any promise greater than 40 will still

deliver 40 because of borrower default. Therefore, the maximum amount of cash that b can borrow
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is 40. If agent b borrows from agent i, then b will promise up to 80, which provides b a higher

leverage than the leverage of borrowing from l. However, because agent i’s endowment of cash is

only 50, the maximum amount that i lends to b is 50 without reuse of collateral. In contrast, if i

can reuse the collateral, then i can borrow 40 from l. Now the e↵ective cash available for i becomes

50+ 40 = 90, and b can borrow 80 from i, which is greater than the borrowing amount of 50 under

no reuse. The leverage of b with no reuse is 100/(100� 50) = 2, while the leverage of b with reuse

is 100/(100� 80) = 5.2 Therefore, agent b can increase leverage by 150 percent by reuse.

The main results of this paper require more than three agents in the model because diversifi-

cation of lenders for the intermediate agents does not exist in a three-agent model case such as in

figure 4, as agent i does not have any other counterparty than agent l from which to borrow.

Now extend the example and include another agent m, who is even more pessimistic about the

asset as sm = 30. Then, the lender l can also reuse the collateral and leverage the position by

borrowing from the ultimate lender m. In the absence of lender default risk, the equilibrium debt

network becomes the top panel of figure 5. However, if lender default risk becomes relevant, b may

not want to concentrate all the collateral exposures to lender i only. Borrower b can diversify across

i, l,m, while putting more weights on the counterparty that could provide higher leverage, as in the

bottom panel of figure 5. Similarly, i may also diversify across l and m, reducing the counterparty

risk. This move could also help b as i becomes safer, lowering the probability of lender default by i.

Furthermore, diversification decreases the overall leverage of the market, lowering the volatility of

the asset price. Therefore, the diversification externality depicted in figure 5 shows the importance

of analyzing the general model suggested in this paper instead of a simple three-agent model.

2. Model

2.1. Goods and Agents

There are three periods: t = 0, 1, 2. There is a single consumption good, cash, that is storable

and denoted as e. There is a divisible asset that generates a cash payo↵ at t = 2 and is denoted

as a. The true asset payo↵, s 2 [s, s̄] ⇢ R+, is revealed to everyone at the beginning of t = 1. The

price of the asset is denoted as pt for each t = 0, 1, 2, and the price of cash is normalized to 1 for

each period. Denote p̃t as the price as a random variable at t.

The set of agents is N = {1, 2, . . . , n}. Agent j’s subjective prior distribution of the asset payo↵

s is Fj , which may di↵er across agents.3 This belief disagreement is to generate trades across

agents. Each agent is endowed with the same e0 amount of cash and zero amount of asset at t = 0.

There are A amounts of assets held by external un-modeled agents who sell all of their assets and

disappear at the end of t = 0.4 The common utility function of agents is linear to their terminal

cash holdings at t = 2; therefore, agents are risk neutral.

2The leverage here is calculated as (asset price)/(haircut), as the interest rate is zero.
3For the agent index, j is used throughout the paper to use i for the lender index and k for the borrower index.
4This assumption, also used in Simsek (2013), is only to shut down the feedback from the asset prices to the net

worth of agents. All main results in this paper go through without this assumption.
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Figure 5: Example of tradeo↵ between counterparty risk and leverage

Note: The blue dashed arrows represent flows of cash, and the red arrows represent flows of collateral. The top figure

represents the single-chain network, which arises when there is no lender default risk. The bottom figure represents

the multi-chain network, which arises when there is lender default risk and borrowers diversify their lenders.

In the beginning of t = 1, each agent j 2 N can receive a negative liquidity shock with

probability ✓j .5 The size of the liquidity shock ✏j is independent and identically distributed across

j 2 N with distribution function G, which is di↵erentiable in support [0, ✏], and g is its density

function. Assume that the upper bound of liquidity shock is large enough, ✏ > e0 + As̄. Denote

that ✏j = 0 if j did not receive a liquidity shock at t = 1.6

2.2. Collateralized Debt Network and Markets

Agents can borrow or lend cash through a one-period (collateralized) debt contract using the

asset as collateral at t = 0.7 A borrowing contract comprises the amount of collateral posted cij ,

the debt amount per one unit of collateral dij , and the identities of the lender and the borrower

i, j. All borrowing contracts are nonrecourse, so the borrowers can default on their promised debt

amount with no consequences. Thus, the actual debt payment per unit of collateral from borrower

j to lender i is min{dij , pt}, because borrowers will give up their collateral when the price of the

collateral is less than the promised debt amount. Denote qi(d) as the price of the contract or the

amount of cash lender i lends at t = 0 to a borrower who promises d per unit of collateral at t = 1.

The gross interest rate is dij/qi(dij), and the haircut is (p0 � qi(dij))/p0.

The collateral posted by a borrower is held by the lender who can reuse it to borrow cash from

5This liquidity shock can be interpreted as senior debt or withdrawal of deposit as in Diamond and Dybvig (1983),
or as a productivity shock as in Acemoglu et al. (2015) and Elliott et al. (2021).

6Note that ✏j = 0 is a measure zero event if j received a shock.
7No contract will be traded in t = 1 because there is no additional uncertainty and endowment at t = 2.
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someone else. Let a1j denote the amount of asset agent j holds at t = 1 by purchasing at t = 0.

Each agent j should satisfy the collateral constraint a1j +
P

k2N cjk �
P

i2N cij . The constraint

implies that the collateral agent j is posting should be coming from either agent j’s outright asset

purchase or reuse of collateral that agent j’s borrowers posted to j.

A (collateralized) debt network at t = 0 is a weighted directed multiplex (multilayer) graph

formed by nodes N and links with two layers ↵ = 1, 2 defined as ~G =
�
G[1],G[2]

�
, where G[↵] =

�
N,L[↵]

�
, L[1]

ij = cij , and L[2]
ij = dij . Define the adjacency matrices C = [cij ] and D = [dij ]

as collateral matrix and contract matrix, respectively. For a fixed N , a debt network can be

represented by a double of (C,D) and describes how much each agent borrows from or lends to

other agents. Following the convention, set cii = dii = 0.

If lender i has negative wealth (net worth) at t = 1, then i goes bankrupt and defaults on

contracts. The borrower j can also default and forgo the collateral if j prefers to do so. However,

if j wants to retrieve the collateral, j su↵ers a lender default loss in the cash amount of

 ij(C)[p� dij ]
+, (1)

where  ij is a function of the collateral matrix and [p � dij ]+ is the di↵erence in value between

the price of the collateral and the debt with [·]+ ⌘ max{·, 0}. The function  ij is a reduced-

form representation of the severity of the lender default. The  ij can represent the fraction of

collateral lost, the litigation cost for the borrower that may depend on the collateral exposure, or

the opportunity cost of time from the delay in delivery of the collateral, as discussed in Section 4.1.

The markets for goods and contracts are competitive Walrasian markets for t = 0, 1, 2. Agents

agree to disagree, and the full structure of the belief disagreement, including each agent’s subjective

belief, is common knowledge as in Fostel and Geanakoplos (2015) and Simsek (2013). Therefore,

agents are price-takers and know each other’s belief and liquidity shock. 8

2.3. Timeline

The timeline of the model, depicted in figure 6, is the following. Agents are endowed with cash

at the beginning of t = 0. Agents buy assets from external agents and form a debt network (C,D)

by borrowing from and lending to each other at t = 0. At the beginning of t = 1, liquidity shocks

✏ ⌘ (✏1, . . . , ✏n) are realized and true asset payo↵ s is revealed. All agents update their beliefs

accordingly to the true s. All the debt is paid back during t = 1, either by the promised amount or

by giving up the collateral. An agent j 2 N may have ✏j that is greater than j’s net worth—that is,

net cash and asset holdings multiplied by the market price—so j goes bankrupt. The collateral is

returned to the borrower from the lender, but some borrowers may su↵er additional lender default

losses. At the end of t = 1, agent j’s final asset holdings a2j are determined. At t = 2, payo↵s of

8This assumption follows the tradition of the general equilibrium literature. One way to interpret this assumption
is to consider that each agent j consists of a continuum (or hundreds) of homogeneous agents within the same type
of j with perfectly correlated uncertainties—that is, all j agents receive the same liquidity shocks (otherwise there
will be no agent-level uncertainty due to the law of large numbers).
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debt network
(C,D) is formed

agents trade assets,
borrow and lend

liquidity shocks
(✏1, . . . , ✏n) realized

asset payo↵ s
revealed

t = 0 t = 1

asset holdings a2
j

determined

debt is paid back,
some agents go bankrupt and
inflict lender default losses

 ij(C)[p1 � dij ]
+

t = 2

asset payo↵ s,
and utilities realized

Figure 6: Timeline of the model

the asset are realized, and agents gain utility from cash.

3. Optimization Problem and Equilibrium Concept

Now that all the model structure is defined, the agents’ optimization problem and equilibrium

can be defined. I begin by defining the model backwards. Agents have no optimization problem

at t = 2 because there are no additional actions and endowments. I define the agents’ decision

problem at t = 1 and the intermediate equilibrium concept of payment equilibrium. Then, I define

the optimization problem of agents at t = 0 and the full equilibrium concept, network equilibrium,

at t = 0.

3.1. Payment Equilibrium at Period 1

At t = 1, agents receive liquidity shocks ✏ and pay each other their debt and inflict lender

default losses  ⌘ [ ij ]i,j2N for a given debt network (C,D), cash holdings e1 ⌘ (e11, e
1
2, . . . , e

1
n)

0,

asset holdings a1 ⌘ (a11, a
1
2, . . . , a

1
n)

0, and revealed asset payo↵ s. Simultaneously, agents also trade

in a Walrasian market, and the asset price p1 is determined endogenously. Bankrupt agents have

to sell all their assets, and only the surviving agents can buy the assets.

For any given ✏ and p1, agent j’s (nominal) wealth relevant to market clearing is

mj(p1) =e1j � ✏j + a1jp1 +
X

i2N
(cjimin{p1, dji}� cij min{p1, dij})�

X

i:mi<0

 ij(C)[p1 � dij ]
+. (2)

If mj(p1) < 0, j goes bankrupt, belongs to the bankruptcy set B(✏|s), and exits the market.

If p1 < s, the return of the asset, s/p1, exceeds the return of cash, which is 1. Thus, agents

would spend all their cash to buy the asset, and the market price is determined by cash-in-the-

market pricing. The asset holding a2j is determined by a2j = [mj(p1)]+/p1. If p1 = s, a2j becomes

irrelevant due to equivalence of returns between cash and asset.
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The cash value of the aggregate supply is Ap1. The aggregate cash value of surviving agents in

the market is
P

j2N [mj(p1)]+. Therefore, the market clearing condition is

X

i2N
[mi(p1)]

+ = Ap1 if 0  p1 < s, (3)

X

i2N
[mi(p1)]

+ � Ap1 if p1 = s. (4)

Hence, an equilibrium is determined by the wealth vector m ⌘ (m1, . . . ,mn) and the resulting

market price p1 of the asset. This market clearing price and allocation is defined as payment

equilibrium, which is an intermediate equilibrium of t = 1 as follows.

Definition 1. For a given period-1 economy of (N,C,D, e1, a1, ✏, s, ), a payment equilibrium

is (m⇤, p⇤1), where m⇤ is the wealth vector and p⇤1 is the asset price, that simultaneously satisfies

wealth equation (2) and market clearing conditions (3) and (4).

3.2. Network Equilibrium at Period 0

Each agent maximizes their expected payo↵ in t = 2 at the beginning of t = 0 by choosing an

investment portfolio. Each agent j 2 N can hold cash, in the amount of e1j ; purchase the asset and

carry it to the next period, in the amount of a1j ; borrow from agent i 2 N , posting collateral in the

amount of cij and promise cash per collateral as dij while receiving qi(dij) per collateral; or lend

to agent k 2 N , receiving collateral in the amount of cjk for the promised cash per collateral as djk

while paying qj(djk) per collateral.

For a given portfolio, the agent’s expected wealth in t = 1 is determined. However, wealth

should be evaluated by the marginal utility of cash for each state, s/p1 that could be greater than

1 if p1 < s. Agent j’s nominal wealth and marginal utility of cash depend on realization of liquidity

shocks ✏ and asset payo↵ s. Agent j’s maximization problem becomes

max
e1j ,{cij ,dij}i2N ,

a1j ,{cjk,djk}k2N

Ej


[mj(p1)]

+ s

p1

�

s.t. a1j +
X

k2N
cjk �

X

i2N
cij ,

e0 = e1j �
X

i2N
cijqi(dij) +

X

k2N
cjkqj(djk) + a1jp0,

(5)

where the first constraint is the collateral constraint and the second constraint is the budget con-

straint.

The equilibrium concept used throughout the paper is a hybrid version of general equilibrium

with price functions that are a↵ected by the network structure as follows.

Definition 2 (Network Equilibrium). For a given economy (N, (sj , ✓j , e0)j2N , A, , G), a septuple

(C⇤, D⇤, e1⇤, a1⇤, p⇤0, p̃
⇤
1, q

⇤) where C⇤, D⇤ 2 Rn⇥n
+ , e1⇤, a1⇤ 2 Rn

+, p
⇤
0 2 R+, functions p⇤1 : Rn+1

+ !
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R+ and q⇤ ⌘ (q⇤1, . . . , q
⇤
n) with q⇤j : R+ ! R+ is a network equilibrium if

1. (C⇤, D⇤, e1⇤, a1⇤) solves the agent maximization problem with two constraints,

2. markets are cleared as c⇤ij is optimal for both agent i and j for all i, j 2 N ,

3. asset market clears as
P

j2N a1j = A,

4. asset price p̃1 is determined by the payment equilibrium for each (✏, s),

5. and asset price p0 and contract prices q are determined by no-arbitrage conditions.

3.3. Discussion of the Model

Borrower Default. Borrower default results in a costless transfer of collateral to the lender.

For example, typical repo contracts are exempt from automatic stay of bankruptcy provisions or

even involve ownership transfer to the lender at the start of the transaction. The model simplifies

borrower default, as the debt contracts are nonrecourse. One reason for this assumption is to shut

down the complexity of borrower default to focus on lender default. Another reason is to have a

tractable model of network formation.9 Although debt payments are independent from borrowers’

balance sheets, the price channel still a↵ects payments. This case is not distant from reality because

the role of collateral is exactly to minimize the borrower default exposure. The no-recourse contract

assumption is also commonly used in the literature as in Geanakoplos (2010), Simsek (2013), Fostel

and Geanakoplos (2015), and Geerolf (2018) for similar reasons.

Lender Default. Lenders cannot strategically default and still fulfill their obligation to return

collateral unless they are bankrupt, which is in line with the actual markets. However, a bankrupt

lender can inflict additional losses to its counterparties. This lender default loss, similar to the

counterparty default losses that are prevalent in the literature, can be in terms of time, e↵ort,

litigation cost, or congestion costs, which are deadweight loss to the economy. For example, over

100 hedge funds had prime brokerage accounts or debt obligations under Lehman Brothers, and

these accounts were frozen during the bankruptcy of Lehman Brothers. These positions, valued at

more than $400 billion, were frozen, which further exacerbated the liquidity shortage of the market

(Lleo and Ziemba, 2014).10

Expectations. Each agent j’s expectation is based on the subjective belief on asset payo↵ sj

and the distribution of liquidity shocks ✏, which is common knowledge. Each realization of s and

✏ will determine the contingent price p1 of that state. Figure 7 is an example tree that depicts the

underlying states and price realizations. Agent 1 believes that only the top set of states in t = 1,

with s = s1, occurs with positive probability. Agents 2 and 3 believe that only the second and the

9For example, Chang (2021) analyzes a network model with full-recourse collateralized debt contracts; however,
the full recourse makes endogenous network formation extremely intractable.

10Even if the borrowers recovered their assets over the long term, the inability to recover funds in the short term
caused disruption. MKM Longboat Capital Advisors closed its $1.5 billion fund partly because of frozen assets, and
the chief operating o�cer of Olivant Ltd. committed suicide because the fund had $1.4 billion value of assets, which
was believed unlikely to be recovered from the Lehman Brothers (Scott, 2014).
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Figure 7: Tree of States and Price Realizations

third sets of states in t = 1 occur with positive probability, respectively. Thus, agents have their

own beliefs on prices.

4. Contagion in Payment Equilibrium in Period 1

This section characterizes the contagion in payment equilibrium at t = 1. The payment real-

ization in t = 1 shows how the given network structure and shocks a↵ect the market price and the

final wealth (and, equivalently, payo↵s) of the agents. The network equilibrium in t = 0 is a general

equilibrium with collateralized debt network formation. Because the network is formed based on

the consideration of the properties of the network contagion at t = 1, a full characterization of the

payment equilibrium is a necessary step to solve for the full model. Furthermore, the analysis of

the payment equilibrium itself is also of interest related to the literature, as this attempt is one of

the first to combine price contagion through endogenous asset prices with the contagion through

direct debt exposures.

4.1. Preliminaries

Lender Default Loss Assumption. The case studies of the bankruptcy of Lehman Brothers

and MF Global find that the lender default was more problematic for borrowers who had larger

counterparty exposures, as the pool of collateral they had to recover was more complex and more

likely to have a larger portion in non-segregated accounts compared with other counterparties

(Fleming and Sarkar, 2014; Lleo and Ziemba, 2014; Scott, 2014; SIPC, 2016). Motivated by these

studies, I assume the following properties of lender default loss functions  ij :

Assumption 1. For any i, j 2 N ,  ij is twice di↵erentiable in each entry of C, and

1. for any C,
@ ij

@cij
= 0 if cij = 0,

2.  ij(C)  cij,
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3.
@ ij

@cij
> 0 and

@2 ij

@c2ij
> 0 if cij > 0,

4.
@ ij

@cij
>

@ ij

@cik
� 0 for any C with cij , cik > 0,

5.
@ ij

@ckj
=

@ ij

@ckl
= 0 for any C with distinct i, j, k, l.

First, borrower j does not bear any loss if collateral exposure to i is zero. Second, the lender

default cannot make repaying the debt a net loss, because borrower j can simply abandon the

collateral without paying. Third, borrower j will face a larger loss, if either lender i holds a larger

pool of collateral under the bankruptcy process (congestion e↵ect) or j takes up a larger share of

the same total collateral pool under the bankruptcy process (share e↵ect). Fourth, j’s losses should

be more sensitive to j’s own exposure to i rather than another borrower k’s exposure, as the former

has both the congestion and share e↵ects whereas the latter only has the congestion e↵ect. Fifth,

borrowers’ exposures to other lenders do not a↵ect the lender default loss from i.

For example, consider  ij(C) =
cijP
k cik

✓P
k cik
A

◆2

. Even if cij remains the same, an increase

in
P

k cik makes borrower j su↵er more loss because of increased congestion. Also, even if
P

k cik

remains the same, an increase in cij increases the share that borrower j has to bear and will increase

the lender default loss for j. ckj or ckl does not a↵ect  ij . Note that the borrower still prefers

to pay in full because the lender default loss can never exceed the total gains from retrieving the

collateral.

Intermediation Order. The class of possible collateralized debt networks, Rn⇥n
+ ⇥Rn⇥n

+ is very

large. Throughout the rest of the section, I focus on the class of networks that arises endogenously

in t = 0, as I show in Section 5. A network is under intermediation order if

X

i2N
dij�d̂

cij  a1j +
X

k2N
djk�d̂

cjk for any d̂ 2 R+ and j 2 N, (6)

and acyclical. This condition implies that if borrower j should pay d̂ or above in the amount of
P

i cij , j has either the payments from other borrowers in the amount of
P

k cjk or just the asset

ownership to cover the payment. Consequentially, if the ultimate borrower fulfills the promise, the

intermediary (reusing the collateral) also has enough cash to fulfill the promise to the ultimate

lender. For example, consider a network of three agents with a11 = c21 = c32, a12 = a13 = 0, and

d21 < d32. This network is not under intermediation order because agent 2 is receiving less payment

from agent 1 (and outright asset purchase) than agent 2 is supposed to pay agent 3. In Section 5,

I show that debt networks formed under full equilibrium in t = 0 are under intermediation order.

4.2. Existence and Multiplicity of Payment Equilibria

First, I show that a payment equilibrium and maximum equilibrium price exist.
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Proposition 1 (Existence and Lattice Equilibrium Prices). For any given collateralized

debt network (N,C,D, e1, a1, ✏, s, ) with C,D > 0 that is under intermediation order, there exists

a payment equilibrium (m⇤, p⇤1). Furthermore, among the set of equilibria, there always exists a

maximum equilibrium (m, p1), where p1 is the highest equilibrium price.

All proofs are relegated to the online appendix. The intuition of the proof is the following. The

debt payment min{dij , p} increases as price p increases. By intermediation order, every borrower’s

wealth also increases as p increases because min{djk, p}�min{dij , p} is increasing in p if djk � dij .

Hence, every individual nominal wealth mj increases in p, shown by Lemma A1 in the appendix.

Because an increase in wealth also means bankruptcy is less likely, there are less lender defaults

when p increases.11 Therefore, there exists a fixed point price that clears the market.

The payment equilibrium is not unique.12 By Proposition 1, there will always be a maximum

equilibrium that has the least number of bankrupt agents and the highest equilibrium price for any

given shocks. From now on, I will focus on the results of the maximum equilibrium as in Elliott

et al. (2014). I assume B(✏) is the bankruptcy set from the maximum equilibrium price—that is,

B(✏) ⌘ B(✏|s, p) from now on. With slight abuse of notation, denote B(p) = B(✏|s, p).

4.3. Network Contagion

Now I analyze the market price condition and its implications to financial contagion.

Suppose that price p is below s. Then, the market clearing condition, equation (3), becomes

the ratio between the remaining cash (cash holdings and net payments to bankrupt agents minus

liquidity shocks and lender default losses) R and the total fire sales of the assets that are under

bankrupt agents’ balance sheets (either by direct asset holdings or by collateral) F ,

⇡(p) ⌘ R(p)

F(p)
⌘

P
j /2B(✏)

0

BB@e1j � ✏j �
P

i2B(✏)
 ij(C)[p� dij ]+ �

P
i2B(✏)
p�dij

cijdij +
P

k2B(✏)
p�djk

cjkdjk

1

CCA

P
j2B(✏)

0

BB@a1j +
P

k/2B(✏)
p<djk

cjk �
P

i/2B(✏)
p<dij

cij

1

CCA

, (7)

where ⇡ is the asset price under the cash-in-the-market pricing.

The denominator F is non-negative and decreasing in p by the intermediation order. However,

if there are no assets to be bought (F is zero), then the asset price will trivially be its fair value s.

If there is enough cash in the market to cover the supply (fire sales) with the fair price (⇡(s) � s),

11Note that a low price p1 is rather the result of more defaults than the cause of more defaults for a fixed bankruptcy
set. Lender default never occurs when p1 is su�ciently low as  ij(C)[p�dij ]

+ becomes zero. Therefore, a decrease in
price would rather reduce the lender default losses as long as the low price does not generate additional bankruptcy.
An equilibrium is stable in terms of p1, so that p1 itself does not generate multiplicity.

12The existence of multiple equilibria implies that there could be even more instability than just focusing on the
equilibrium with maximum price or welfare (Roukny et al., 2018).
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then the price is also the fair value s. If the remaining cash is not su�cient to buy all the assets at

fair price, then the market price will be ⇡(p) < s, a liquidity constrained price.

The post-shock market clearing condition, equations (3) and (4), can be rearranged as

p =

8
<

:
s if ⇡(s) > s or F(p) = 0

⇡(p) otherwise.
(8)

The aggregate nominal wealth decreases as the price decreases or as the lender default loss in-

creases. However, there is a feedback from the nominal wealth to the price by increased bankruptcy

in (7). Such an interaction is formalized by the following proposition.

Proposition 2 (Monotone Contagion). For a given period-1 economy, suppose that (m⇤, p⇤) is the

payment equilibrium. Then, the equilibrium wealth (m⇤
1,m

⇤
2, . . . ,m

⇤
n), price p⇤, and the number of

surviving agents |N\B⇤(✏)| are all decreasing in liquidity shock ✏j and lender default loss  jk and

increasing in cash holdings e1j for any j, k 2 N .

The negative liquidity shocks ✏ reduce available cash on the balance sheets of the agents. Lower

balance sheets will cause the asset price to decline and bankruptcy of agents. Additional bankruptcy

will trigger lender default, while the price decline will trigger both borrower default and valuation

pressure. Both channels will cause further decline in the balance sheets of the agents, and so on.

Therefore, there is an amplifying interaction between the two channels of contagion.

Define the (utilitarian ex post) social welfare as the sum of all consumption in t = 2 for all

agents, including the outside creditors of the liquidity shocks, as

X

j2N

"
ej + a1js�

X

i:mi<0

 ij(C)[p1 � dij ]
+

#
. (9)

Note that ✏j for each j 2 N is not included in the social welfare, as payments to liquidity shocks

by the agents are gains to the outside creditors, thus a zero sum. Because the asset is held by

someone remaining in the market, only the lender default losses reduce the social welfare for given

liquidity shocks. Proposition 2 shows the monotone comparative statics of underpricing and lender

default losses. Therefore, s�p1, the di↵erence between the fundamental value and the market price

of the asset, is proportional to the aggregate deadweight loss of the market. Hence, the degree of

underpricing is proportional to the social welfare.

Corollary 1. Suppose that there are two di↵erent payment equilibria with respective prices p1

and p01 for the same fundamental value of the asset s. If p1 > p01, then the social welfare in the

equilibrium with p1 is greater than the social welfare in the equilibrium with p01.

Thus, the expected payment equilibrium price is a measure of ex ante systemic risk of a network.

In particular, Ej [s � p1] is the expected systemic risk under the subjective belief of agent j 2 N .

This notion of systemic risk follows the definition of systemic loss in value defined in Glasserman
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and Young (2016). Note that this measure focuses only on systemic risk, as the measure does not

include ex ante allocative e�ciency across agents for holding di↵erent assets and contracts.

Finally, comparative statics for the given economy in t = 1 also show that the model’s contagion

property makes sense. Propositions B1 and B2 as well as numerical results in the online appendix

show that if the total counterparty exposure increases, agents’ cash holdings increase, the likelihood

of liquidity shocks decreases, or agents are more diversified, then the expected price increases,

implying lower systemic risk.13

5. Network Formation in Period 0

This section characterizes the network formation process in a network equilibrium at t = 0.

Agents have expectations on contagion and the resulting outcome in t = 1 for any given macro

variables, p̃1, B(✏), and  ij(C) for any i, j 2 N . In a network equilibrium, every agent maximizes

expected utility for the given prices and other agents’ behavior. For their portfolio decision, agents

consider the expected return from a certain investment as well as the counterparty risk.

For tractability, assume ✓j = ✓ for all j 2 N , with 0 < ✓ < 1, for now. Also, assume that

agent i 2 N believes that the asset payo↵ will be si =2 R+ with probability one.14 Without

loss of generality, enumerate agents by the order of their optimism as s1 > s2 · · · > sn. Finally,

for notational simplicity, omit the + superscript over the bracket and denote Ej [·] as agent j’s

expectation conditional on non-negative nominal wealth of j.

5.1. Price and Rates in Period 0

In this subsection, the prices and interest rates are pinned down by agents’ investment decisions

and no-arbitrage conditions. In addition, I show that the equilibrium collateralized debt network

is under intermediation order. The online appendix contains the detailed steps of deriving the

equations in this subsection.

Agents solve the maximization problem (5) given their beliefs on the distribution of p1 and

B(✏) under shock realizations in t = 1. Agents have five di↵erent investment options: holding

cash, buying the asset, buying the asset with leverage, lending cash to others, and lending cash

with leverage. For each additional unit of cash, an agent compares the marginal returns of the five

options. This return comparison will determine the interest rates and asset price.

First, I show that every agent holds a positive amount of cash in any equilibrium. Agent j’s

return on holding cash is the expected marginal utility of cash, Ej [s/p1]. Suppose that agent j is

holding zero amount of cash. Because the support of G is large enough, every agent has a positive

13Ibragimov et al. (2011) suggest a model with diversification of risk classes leading to systemic risk through
commonality. This force is countered by the competition in the asset market and high marginal utility of cash under
crisis states in my model. On the contrary, Capponi et al. (2015) show that concentration increases systemic risk when
the network is unbalancing, which is similar to this paper because the liabilities go to one direction and increasingly
toward the ultimate borrower through intermediation order.

14This concentrated beliefs structure—similar to that of Geerolf (2018)—is merely for tractability, and to generate
gains from trade, as the main focus of this paper is not on the belief disagreements.
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probability of bankruptcy. Then, there is a positive probability of p1 being zero by (7) when agent

j is holding zero cash. The marginal utility of cash is infinity under such a state, and the ex ante

return on holding cash becomes infinity as well. Therefore, every agent in a network equilibrium

should hold a positive amount of cash, as summarized in Lemma 1.

Lemma 1 (Positive Cash Holdings). For every agent j 2 N , agent j’s cash holding is positive,

e1j > 0, in any network equilibrium.

This lemma shows a distinct property of the model that does not exist in other models in

the financial networks literature, which often have an equilibrium in which agents choose to have

strongly correlated payo↵s (Allen et al., 2012; Cabrales et al., 2017; Elliott et al., 2021; Erol and

Vohra, 2020; Jackson and Pernoud, 2021). The main reason of this correlated payo↵ structure is

that agents would prefer to default whenever their counterparties are defaulting because of limited

liability. An agent does not gain from surviving in a state where all other agents are defaulting

on their contracts whereas the surviving agent still has to pay its obligations to defaulting agents.

However, marginal utility of cash in this paper acts as an opposing force and makes agents de-

correlate their payo↵s from each other by holding cash. An agent in my model can purchase all the

cheap assets in the market when all other agents are bankrupt.

Furthermore, the result in Lemma 1 is also important in deriving prices and rates in equilib-

rium. Because every agent is holding some amount of cash, the cash return Ej [s/p1] becomes the

benchmark return for any other investment decision. Therefore, the cash return pins down all of

the no-arbitrage conditions and greatly simplifies the problem.

Suppose that agent j is lending a positive amount without reusing the collateral in a network

equilibrium. The return of lending to a contract that pays d for agent j is the expected utility of

the contract payment over the cost of that contract—that is,

1

qj(d)
Ej


min

⇢
s, d

s

p1

��
= Ej


s

p1

�
,

and the equality holds because the return of lending should equal the return of cash for no arbitrage.

This equation also represents how the price of a contract (or interest rate) is determined as

qj(d) =

Ej


min

⇢
s, d

s

p1

��

Ej


s

p1

� =

Ej


min

⇢
1,

d

p1

��

Ej


1

p1

� . (10)

Return on asset purchase without leverage is Ej [s/p0], so the return with leverage is

sj
p0 � qi(d)

Ej

"
1� d

p1

�+
� @ ij(C)

@cij


1� d

p1

�+
1 {i 2 B(✏)}

#
,

where agent j is borrowing cash from agent i with cij amount and promises d and 1[·] is an indicator
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function. Similarly, return on lending with leverage is

sj
qj(d0)� qi(d)

Ej

"
min

⇢
1,

d0

p1

�
�min

⇢
1,

d

p1

�
� @ ij(C)

@cij


1� d

p1

�+
1 {i 2 B(✏)}

#
, (11)

where j buys (lends money) a contract with promise d0. From the return comparisons and lenders’

no-arbitrage condition, an agent’s individual leverage decision can be derived.

The following theorem shows that the equilibrium debt network is under intermediation order

and derives the asset price and contract prices as well as the contracts traded in positive amounts

in any network equilibrium. The equilibrium collateral matrix should be an acyclical network as

agents borrow from more pessimistic agents, and each agent can be both borrower and lender

because of return di↵erences under subject beliefs and intermediation rents.

Theorem 1 (Intermediation Order and Contract Prices). In any network equilibrium, the following

statements hold:

1. The collateralized debt network is under intermediation order.

2. For any contract with cij > 0, dij = si for any j < i 2 N .

3. For any j < n, j borrows a positive amount from j + 1 and zero from any i < j.

4. The contract prices are

qj(d) = qj+1(sj+1) +

Ej


min

(
1,
d

p1

)
�min

(
1,
sj+1

p1

)
�
@ j+1,j(C)

@cj+1,j

"
1�

sj+1

p1

#+

1{j+12B(✏)}

�

Ej


1

p1

� (12)

for any lender j < n and

qn(d) =

En


min

⇢
1,

d

p1

��

En


1

p1

� (13)

for lender n.

5. The asset price is determined by p0 = q1(s1) following (12).

The intuition of the proof is the following. The most optimistic agent, agent 1, purchases the

asset because agent 1 values the asset the most.15 Also, agent 1 would like to maximize leverage and

return by borrowing from another agent. Among the potential lenders, agent 2 values the collateral

15Agents other than agent 1—for example, say agent j—can also hold some amount of assets. In this case, agent
1 holds more cash than agent j so that the possible underpricing from larger support of p1 for agent 1 is mitigated
by being less vulnerable to liquidity shocks than others, such as agent j. Thus, e11 > e1j in such cases. This property
of optimists holding more cash than pessimists can be formalized for a certain parametric region.
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the most and is willing to lend more than any other agents. Therefore, agent 1 prefers to borrow

from agent 2 to maximize leverage.16 Agent 2 would like to leverage as well, and agent 2’s problem

is isomorphic to agent 1’s problem. Debt networks following this intermediation structure naturally

satisfy the intermediation order. When an agent decides to borrow from a lender, say agent i, the

agent prefers to promise the maximum possible amount—that is, si—to maximize leverage. The

price equations come from equating the return in (11) with cash return because of Lemma 1.

The results in Theorem 1 also have implications on the pattern of haircuts and interest rates

that match recent empirical evidence in the literature (Baklanova et al., 2019; Jank et al., 2021).

First, there can be multiple haircuts for the same collateral asset. Second, high levels of reuse would

lead to wider dispersion in rates. Third, the model could explain the weak relationship between

haircuts and interest rates as shown by the following corollary of Theorem 1.

Corollary 2. In a network equilibrium, there can be multiple haircuts for the same collateral asset.

Also, the relationship between haircuts and interest rates may not be strictly negative.

This result implies that my model with reuse of collateral and lender default can replicate

empirical observations unable to be replicated by existing models focusing on borrower default.

Baklanova et al. (2019) show that multiple haircuts are used for the same (CUSIP-level) collateral

security. Also, Jank et al. (2021) show that high levels of reuse would lead to higher volatility of

rates. Endogenous reuse of collateral in my model generates multiple haircuts for the same asset,

and the dispersion in rates increases when the level of reuse of collateral increases. Also, Baklanova

et al. (2019) find that the relationship between haircuts and rates is not as significant as predicted

by the theoretical models based on borrower default. The existence of lender default loss in my

model can distort the interest rates across di↵erent haircuts. Corollary 2 shows that these empirical

patterns are natural results of my model that incorporates reuse of collateral and lender default.

By Theorem 1, I can focus on the class of debt networks under intermediation order. To be

precise, the equilibrium contract matrix D⇤ is a lower triangle matrix with d⇤ij = si for any i > j

for j < n � 1 and d⇤ij = 0 otherwise. Also, Theorem 1 greatly simplifies the agent’s optimization

problem because the problem becomes determining the optimal weights of collateral exposure to

di↵erent borrowers and lenders (for the fixed contract matrix D⇤).

5.2. Equilibrium Allocation in Period 0

Given the prices in t = 0, the remaining parts of the network equilibrium are the amount of cash

holdings and the amount traded for each contract. The first tradeo↵ for each agent is the tradeo↵

between leverage and counterparty risk. The second tradeo↵ is the tradeo↵ between holding cash

and purchasing collateralized debt (or the asset). These individual tradeo↵s determine each agent’s

optimal portfolio while the equilibrium prices clear the market.

16Geerolf (2018) and Gong and Phelan (2020) also show that agents maximize leverage at each step of the inter-
mediation chain.
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Theorem 2 (Existence and Characterization of Network Equilibrium).

For a given economy (N, (sj , ✓j , e0)j2N , A, , G) and maximum equilibrium selection rule, there

exists a network equilibrium (C,D, e1, a1, p0, p̃1, q), which is characterized as follows:

1. For any i, j 2 N, i 6= j, dij = si and (C,D) is under intermediation order.

2. For any j, i 2 N and j  i, cji = 0.

3. For any counterparties i, k of j with cij > 0, ckj > 0,

sj
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�
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4. Cash holdings of each agent j are e1j = e0j +
P

i2N cijq(si)�
P

k2N cjkq(sj)� a1jp0.

5. Contract prices q and the asset price p0 at t = 0 are determined by Theorem 1.

6. The price of the asset at t = 1, p̃1 is determined by payment equilibrium for (C,D).

Theorem 2 contains two main implications. First, statement 3 of Theorem 2 suggests the first

main mechanism of network formation—the tradeo↵ between leverage and counterparty risk. If

the lender counterparty risk is negligible (small  or ✓), a single-chain network is formed. Even

if cj+1,j is large, the return of borrowing from j + 1 is still greater than the return of borrowing

from l > j + 1, as the increase in counterparty risk is small. Agents are not concerned about

diversifying their counterparties and choose the most profitable counterparty—that is, the most

optimistic agent after themselves—concentrating all their collateral exposure on that counterparty.

However, if the lender counterparty risk is non-negligible, then a multi-chain network is formed

in equilibrium. Agent j borrows not only from j + 1, but also from j + 2. Agents would diversify

their counterparties and would like to link with several levels down of optimism. However, this lower

counterparty risk comes at the cost of lower leverage (a higher haircut). This network formation

mechanism, the tradeo↵ between leverage and counterparty risk, makes the intermediation pattern

distinct from other models in the literature.

The second implication of Theorem 2 is leverage stacking through the lending chain. An increase

in q(sn) increases all the subsequent contract prices through the recursive equation (12), which

implies that the lending amount increases. Therefore, leverage in the lending chain has a multiplier

e↵ect due to reuse of collateral, which Gottardi et al. (2019) have also examined. A distinct feature

from Theorem 2 is that di↵erent levels in the lending chain have di↵erent multiplier e↵ects. An

increase in sn will have a larger e↵ect than an increase in s2, as agent n’s lending stacks n � 1

times through the lending chain through equation (12). A real-world implication could be that the

increase in the confidence of the ultimate lender can lead to a huge increase in asset prices through

this multiplier e↵ect.
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Finally, note that infinitely many debt contracts are still available for trade in the market. The

price of a contract with any arbitrary d for a given counterparty is already determined in the market

by equation (12). However, only a few of those contracts are actually traded in positive amount in

equilibrium as in Geanakoplos (1997).

The next result is on the e↵ect of diversification in a network equilibrium. Diversification of

lenders creates positive externalities to other agents by making the overall network safer. Thus,

systemic risk (the expected asset price) under any agent’s belief decreases (increases). Because

agents do not take this decrease in systemic risk into account, the degree of diversification is always

less than the optimal degree in the economy, and the equilibrium could be ine�cient.17 This result

is similar to the counterparty concentration externality in Frei et al. (2021).

Before I proceed to the diversification result, I define the diversification of counterparties. For

a debt network (C,D), define C̃ as a diversification of agent j from C, if

1.
P
i2N
 ij(C)!ij(dij ;C) >

P
i2N
 ij(C̃)!ij(dij ;C),

2.
P
i2N

cij �
P
i2N

c̃ij ,

3. cik � c̃ik for all i, k 2 N with k 6= j, and

4. (C̃,D) is under intermediation order.

This diversification of agent j from a given collateral matrix implies that agent j has more diversified

counterparties than the original network in either intensive or extensive margins.

Proposition 3 (Diversification and Systemic Risk). Suppose that (C,D, e1, a1, p0, p̃1, q) is a net-

work equilibrium. Then, there exists an allocation with higher expected asset prices and lower sys-

temic risk under any agent’s belief that is a diversification of agent j from C and paying respective

contract prices q for the change in collateral matrix.

Unlike the unsecured debt network models in the literature, the too-interconnected-to-fail prob-

lem is not an issue in this model because all the debt connections are collateralized. Weight of the

flows (exposures) also matters in my model, and there are limits to the total weight for each agent

by the collateral constraints. Therefore, more links would always imply more diversified and lower

flow volume of collateral, which would always lead to lowering the systemic risk in my model.

The next result is the endogenous market reaction to the change in counterparty risk. As the

counterparty risk increases, agents diversify their counterparties more, and the overall leverage

and debt decrease by the tradeo↵ between counterparty risk and leverage shown in statement 3

of Theorem 2. The intuition for this result is the following. Agents prefer to hold more cash if

severe liquidity shocks are more likely. Then, agents are also willing to lend less, and contract

prices decrease. Thus, the overall debt decreases not only by the decrease in leverage from lender

17In Proposition B3 in the online appendix, I show that there always exists an allocation that Pareto dominates
the equilibrium allocation under an additional assumption.
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Figure 8: Comparison of Endogenous Networks – no risk, moderate risk, and significant risk

No risk Moderate risk Significant risk
Liquidity shock probability (✓) 0 0.4 0.8
Pr(Bankruptcy) 0% 9.6% 25.4%
Leverage 10 2.0766 1.7411
Collateral multiplier 3 1.6870 1.4149
Volume of debt 2400 756 431
Number of links 3 6 6

Table 1: Comparison of Endogenous Networks

diversification, but also by the decrease in asset and contract prices. To complete the full com-

parative statics, consider the marketwide e↵ect of the change in a borrowing pattern. Because the

diversification of lenders will increase the expected asset price as in Proposition 3, the asset price

in t = 1 is more likely to exceed the debt amount. Then, they are more likely to su↵er the lender

default loss and have even more incentives to diversify.

Theorem 3 (Network Change under Changes in Counterparty Risks). If the counterparty risks

in the economy become greater as ✓j increases, then agents diversify their counterparty exposures

more, the asset price decreases, the average leverage decreases, the reuse of collateral decreases, and

the average number of counterparties increases.

The results of Theorem 3 are consistent with the empirical facts. As Singh (2017) documented,

the velocity (reuse) of collateral decreased from 3 to 2.4 right after the bankruptcy of the Lehman

Brothers, and the average leverage in the over-the-counter (OTC) market also went down. In

the wake of Bear Stearns’ demise, hedge funds, which used to have business with only one prime

broker, had increasingly used multiple prime brokers to mitigate counterparty risk (Scott, 2014).

After the Lehman bankruptcy, hedge funds increased the number of prime brokers they work with

even further and the prime brokerage market became much more competitive—which translates into

lower intermediation rents under Theorem 3—after the crisis (Eren, 2015; Sinclair, 2020). Moreover,

the average number of linkages between financial institutions increased about 30 percent over the

four years after the Lehman bankruptcy, and hedge funds diversified their portfolio of counterparties

almost immediately after the Lehman bankruptcy (Craig and Von Peter, 2014; Eren, 2015; Sinclair,

2020).
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Figure 9: Single leverage complete bi-partite network

Numerical examples in figure 8 and table 1 illustrate the comparative statics in Theorem 3.

Figure 8 represents the collateral flow of promises of no-risk, moderate risk, and significant risk

cases, respectively. Each numbered node represents the agent, and the arrow link represents the

direction and size of exposure. As risk increases, equilibrium network changes from a single-chain

network with large collateral flows to a multi-chain network with smaller collateral flows. As the

liquidity shock and counterparty risk become more relevant, the probability of bankruptcy increases.

The leverage of agent 1 decreases by a huge margin, and the collateral multiplier decreases as agents

diversify their counterparties, which reduces the reuse of collateral. The number of links increases

because of diversification and the total volume of debt decreases.

5.3. Exogenous Leverage or Network

Exogenous leverage models completely miss the main results in this paper. If an exogenously

given leverage (or haircut) is fixed as d per unit of collateral with price q(d), then agents will

be divided into two groups—buyers (borrowers) and sellers (lenders) of the asset. Then, there

is no tradeo↵ between leverage and counterparty risk because there is only one contract. Agents

will fully diversify their counterparties. Thus, a complete bi-partite network as in figure 9 is the

equilibrium network under exogenous leverage. This outcome is in line with the actual network

structure of the triparty repo market, which is a bi-partite network with a fixed contract terms for

a large set of collateral (Copeland et al., 2014). Because agents are already diversifying fully, a

policy intervention that pools counterparty risks has zero e↵ect on network formation.

Proposition 4. If only one contract d is available in the market, then the equilibrium network is

a complete bi-partite network.

Furthermore, exogenous network models would also miss the full picture of a market condition

change or a policy intervention. Because the debt relationships are already fixed and the debt

matrix is endogenously fixed as D⇤, the only factor that is changing is the contract prices q(d).

Although a policy change such as mandating central clearing would increase the contract prices,

the overall counterparty exposures would remain the same as the network is fixed.

These results show that simultaneously endogenizing leverage, asset prices, and network for-

mation is necessary to generate the change in the tradeo↵ between counterparty risk and leverage.

Therefore, this paper finds a novel feature of endogenous change in network structure that has not
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been explored in the literature.

6. Discussion

6.1. Allocative E�ciency versus Systemic Risk

The ex ante social welfare in the model comprises two major parts: the allocative e�ciency

and systemic risk, on which this paper focuses. The allocative e�ciency is maximized under a

single-chain network (maximum reuse of collateral) because each agent e↵ectively buys (bets) the

tranche of the asset in which the agent believes. However, a single-chain network also maximizes

systemic risk by the concentration of network and the maximum amount of leverage. While the

analysis in this paper focused exclusively on the systemic risk side, the overall social welfare should

depend on the balance between the two (Gofman, 2017). Therefore, the main contribution of this

paper should be considered as identifying a new mechanism of how the systemic risk changes when

the underlying conditions change the endogenous network structure.

6.2. Intermediation Spread with Additional Heterogeneity

The analysis so far has assumed homogeneous endowments and liquidity shock distributions.

The setup of the model generates varying intermediation spreads and relative position in the net-

work structure based solely on the heterogeneous beliefs. In reality, this intermediation spread and

network structure could also depend heavily on other dimensions of heterogeneity, such as size of

each agent and idiosyncratic liquidity shock distribution.

The model in this paper can be extended to allow heterogeneous endowments and shocks. If an

agent has large endowments, then the agent can play a central role in the intermediation structure.

In particular, the agent can become a core intermediary that intermediates trades across di↵erent

agents by assuming the counterparty risk while charging higher spreads. This setup can potentially

replicate the spread structure typically observed in the data—a spread between inter-dealer rates

and triparty rates in the repo markets. A similar analysis is possible if an agent has a lower

probability of receiving liquidity shocks. Even more degree of freedom is possible by allowing

heterogeneous costs for each pair as  ij(C). Although this dimension is not fully exploited in the

previous sections, such a heterogeneous cost structure would be crucial in estimating the parameters

empirically and replicating the core-periphery structure in OTC markets as in Craig and Ma (2021).

Moreover, the haircut for a hedge fund’s contract is typically greater than the haircut for a

dealer’s contract when they borrow from money market mutual funds (Baklanova et al., 2019).

Introducing size and cost heterogeneity can attain the haircut di↵erences. If a dealer is much larger

than its counterparties (as the dominant dealers observed in the data), then the dealer may be

able to trade with other agents under a much lower haircut. More formal analysis on the possible

heterogeneity is left for future extensions.
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6.3. Policy Implications

The results suggest that a measure of systemic risk due to interconnectedness has to include

both reuse of collateral and leverage. A combination of low level of reuse and low leverage implies

low systemic risk. An increase in either implies higher vulnerabilities of the market. An increase

in both reuse and leverage would be much more concerning, as they could amplify the price swings

as discussed in Section 4. Therefore, monitoring both the leverage and interconnectedness of the

market is important in accurately assessing systemic risk.

Theorem 3 suggests that a policy change mitigating counterparty losses can have a side e↵ect

of exacerbating the diversification externality problem by the endogenous changes in the network.

Such a policy at a glance may seem to reduce systemic risk as individual counterparty risk for each

agent decreases. However, the tradeo↵ between counterparty risk and leverage disappears when

individual counterparty risk is insulated. Agents will form a single-chain network (or a network

with less diversification), which maximizes leverage, reuse of collateral, and systemic risk.

For example, mandating central clearing by a CCP was one of the key elements of the finan-

cial system reforms addressed by central banks and financial authorities after the financial crisis

in 2008. The spikes in the repo market in September 2019 and the COVID-19 crisis in March

2020 have revitalized the discussion on CCPs (Du�e, 2020). CCPs can decrease systemic risk by

insulating clearing members from counterparty risks by novation, reducing counterparty exposures

significantly by netting, and e�cient collateral management. However, there could be a hidden side

e↵ect of an increase in systemic risk by endogenous network responses highlighted in this paper.

Indirect ways of addressing the risks related to concentration and reuse of collateral are already

active in the collateralized debt markets. For example, there are single counterparty exposure

limits, large exposure caps, and CCPs’ initial margin (collateral) management such as concentration

margin add-ons. These measures will mitigate the extreme form of concentration and reuse of

collateral. Various forms of leverage regulations would help mitigate the systemic risks coming

from price swings and liquidity shocks as well.

A more direct regulation to solve for the diversification externality problem could be introducing

a relevant leverage ratio restriction. A slight modification of the Basel III supplementary leverage

ratio, which is e↵ectively a tax on intermediation activity that is proportional to the size of an

intermediary’s balance sheet, can be used as

Tier 1 Capital

(c21i + c22i + · · ·+ c2ni)⇥ Total Leverage Exposure
,

and risk externality can be included as weights of counterparty exposure in the denominator. These

restrictions provide marginal incentives to diversify, internalize second-order defaults, and maintain

borrower or lender discipline of agents. Such a marginal adjustment is di�cult to implement

in existing measures such as single counterparty exposure limits, large exposure cap, and global

systemically important bank capital surcharge in interconnectedness.

A supplementary policy is liquidity injection to the agent under distress according to its e↵ect
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on the system, as in Demange (2016). This injection or bail-out idea also faces side e↵ects from

moral hazard in terms of network formation (Leitner, 2005; Erol and Vohra, 2020).

7. Conclusion

I constructed a general equilibrium model with collateral featuring endogenous leverage, endoge-

nous price, and endogenous network formation, which is the first attempt in the literature. The

model bridges the theories of financial networks and general equilibrium with collateral. Collater-

alized debt has an additional amplification channel through asset price risk—the price channel—on

top of the balance sheet risk through the debt network—the counterparty channel.

Borrowers diversify their portfolio of lenders because of the possibility of lender default. How-

ever, lower counterparty risk comes at the cost of lower leverage. Positive externalities arise from

diversification because it reduces not only the individual counterparty risk, but also the systemic

risk, by limiting the propagation of shocks and price volatility. The key externalities here, arising

from the tradeo↵ between counterparty risk and leverage, are absent in models with exogenous lever-

age or networks. This network formation mechanism shows that a policy that mitigates individual

counterparty risk could have negative side e↵ects by distorting the tradeo↵ between counterparty

risk and leverage.

The model also generates predictions that fill in the gap between the empirical data and the

existing models in the literature. Greater counterparty risk induces agents to diversify more, which

lowers leverage and reuse of collateral, and increases the number of links. Moreover, the model

explains how there could be multiple haircuts for the same asset used as collateral and why the

relationship between haircuts and interest rates may not be strictly negative in contrast to the

models focusing only on borrower default.
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