
Moldy Lemons and Market Shutdowns∗

Jin-Wook Chang† Matt Darst‡

November 4, 2023

Abstract

This paper studies conditions under which small changes in fundamentals cause
competitive markets to shutdown due to adverse selection in a non-exclusive contracting
environment. We first show that markets with non-exclusive competition are generally
robust to small changes in the risk profile of agents (moldy lemons), which stands in
stark contrast to exclusive contracting environments where trade may suddenly cease.
We extend the environment to include outside options and establish a necessary and
sufficient condition for trade to breakdown, and show that the entry of moldy lemons
can trigger what we call exit cascades and a breakdown in market trades. Finally, we
show that more precise information about agents’ types makes markets more prone to
exit cascades. The model is general, does not rely on institutional details or structure,
and thus applicable to many different markets and contexts.
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1 Introduction

How can a market that functions well in normal times suddenly collapse under stress?
Throughout history—from banking panics in the national banking era to the dry-up of
asset-backed securities markets (for example, see Figures 1 and 2) and freezing of interbank
markets in the Global Financial Crisis—one common answer is adverse selection (Beltran et
al., 2017; Calomiris and Gorton, 1991; Mishkin, 1999; Ivashina and Scharfstein, 2010; Covitz
et al., 2013; Foley-Fisher et al., 2020). Canonical models that feature market failure due to
adverse selection beginning with Akerlof (1970) and Rothschild and Stiglitz (1976) assume
exclusive contracting between agents. However, in practice, most markets are characterized
by nonexclusive contracting where agents are generally free to trade and contract simulta-
neously with multiple counterparties (for example, collateralized debt and loan obligations
(CDOs and CLOs), derivatives, over-the-counter (OTC), capital, and insurance markets).
The inability to monitor a counterparty’s trades was certainly a major factor behind the
2021 collapse of family office Archaegos and the bail out of AIG in 2008 due to its credit
derivatives positions.

This paper studies conditions under which trade in markets subject to adverse selection
and non-exclusive competition break down due to a small change in underlying fundamentals.
To make progress on this issue, we build on the recent work by Attar et al. (2021) who
develop a general model of non-anonymous trade where agents’ types are private information
and they are free to contract with as many counterparties as they wish. Importantly, the
equilibrium allocation in their framework always exists and is unique, which circumvents the
non-existence issues that plague adverse selection economies (Attar et al., 2014; Rothschild
and Stiglitz, 1976). Furthermore, the equilibrium allocation features multiple contracts
trading in equilibrium at different prices and quantities rather than a single pooling contract
as in Akerlof (1970) and Attar et al. (2011).

We believe the Attar et al. (2021) allocation closely resembles real world settings in insur-
ance markets where insurance companies know with whom they contract, but policy holders
are free to obtain multiple policies from different insurers. Similarly, in OTC derivative
markets, clients trade with a relatively small set of dealers with close client relationships.
However, client trades across dealers are unobserved from the dealer perspective. Hence,
trade is non-exclusive across suppliers and non-anonymous with a given supplier. In both
settings, the more contracts clients purchase, which may be a standardized products, the
higher the premium or price.

Our main results can be stated as follows: In the baseline model of Attar et al. (2021), the
presence of the worst type of agent (a moldy lemon) causes trade to unravel only if their mass



is sufficiently large. By contrast, when agents have outside options or reservation utilities, a
small mass of moldy lemons can lead to a large cascade of exits. Hence, we uncover a novel
channel and conditions under which a small change in fundamentals amplifies into a broader
market collapse. Moreover, we show that markets are more susceptible to unraveling as more
precise information about agents’ types is revealed. Thus, we show in a simple framework
how “information events” such as information production can generate a breakdown in trade.

We derive these results in a general and flexible model of perfectly competitive trade
subject to adverse selection that allows for non-exclusive contracting between buyers and
sellers following Attar et al. (2021). This non-exclusive contracting framework imposes little
structure on prices and quantities and abstracts away from complicated model structures or
restrictions backed by institutional details (e.g. information production in Dang et al. (2020),
dynamics of collateral and reputation in Chari et al. (2014), or dynamic self-fulfilling market
freezes in Malherbe (2014); Asriyan et al. (2019)) that are generally needed to generate
market shutdowns through small changes in underlying fundamentals; all we require is a
standard single-crossing property on preferences and a monotonicity condition on costs.
Together, these conditions imply that types more willing to trade larger amounts are more
costly to serve. Hence, there is weak-adverse selection.

Following Attar et al. (2021), we characterize a market shut down or unraveling of trade
when an active market becomes inactive and “entry-proof.” An inactive market is one for
which the no-trade point dominates trade in the market; markets are entry-proof when the
willingness of each agent to trade at the no-trade point does not exceed the cost to serve
all types that will enter the market. Finally, the cost to serve the market is given by the
upper-tail conditional expectation of the unit cost of all agents expected to trade.

We extend the environment of Attar et al. (2021) by considering an agent that is the
worst type among all possible types—that is, extending the lower tail of the distribution of
types.1 We call this agent a “moldy lemon.” In an investment or trading environment, moldy
lemons are agents whose project or asset has the lowest expected payout. Thus, our main
research question becomes: Does a shift in underlying fundamentals that create a small mass
of moldy lemons cause the market to shutdown?

Before turning to the impact of the entry of moldy lemons, it is useful to understand
how allocations in the general non-exclusive contracting economy of Attar et al. (2021) are
characterized. In technical terms, the allocations in this environment are recursive layers
along a convex-market tariff. Along the first layer all types trade, and the contracts are

1To be precise, our results go through for any general shift in the distribution that changes both the
unconditional and conditional means. By contrast, shifts in variance or second order stochastic dominant
changes are not sufficient to preserve our results.
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Figure 1: Issuance of Collateralized Debt Obligations and Collateralized Loan Obligations

Source: Securities Industry and Financial Markets Association.
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Figure 2: U.S. leveraged loan default rate

Note: CDO and CLO issuance plummets in times of crises, but the default rate of the underlying securities–
leveraged loans–modestly increases.
Source: S&P Global Market Intelligence.

traded at the lowest price equal to the expected cost to serve all types. The quantity traded
equals the demand of the lowest (best in suppliers’ perspective) type. Along the second
layer, the lowest type does not trade, and the price is equal to the expected cost of serving
all types except the first type. Along this layer, the quantity each agent—other than the
lowest type—trades is the residual demand of the second type. This structure continues until
the final layer meets the residual demand of the highest type for whom sellers break even
to serve. Hence, all types except the lowest type generally combine layers along the market
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tariff to arrive at an aggregate level of trade, which is prohibited by assumption in exclusive
contracting environments. Note that the unit price increases across these layers, forming a
convex-market tariff for the entire market allocation.2

Our first result stated in Theorem 1 is that moldy lemons change the equilibrium quanti-
ties traded in a smooth fashion. This implies that markets shut down iff the mass of moldy
lemons is sufficiently large. The intuition comes from noticing that the first agent to exit
the market is the best type. When the best type does not trade, although the market price
increases because the average quality of the remaining pool is worse, each agent’s marginal
rate of substitution between quantity and price weakly increases. Therefore, all remaining
agents’ incentives to trade actively in the market are at least as strong as they previously
were. Therefore, the only way to generate a large cascade of exits defined by types beyond
the best type exiting the market is if the initial entry mass of moldy lemons is sufficiently
large, a result reminiscent of Akerlof (1970) and Azevedo and Gottlieb (2017) under exclusive
contracts.

We then turn to understand the more relevant question: Under what circumstances
can a normal functioning market collapse due to a small mass of moldy lemons entering.
We extend the model by endowing agents with an outside option to market participation.
These outside options may represent payoffs obtainable to agents outside of the market.3

Alternatively, they can represent fixed participation costs. For example, an agent may enjoy
a higher utility by staying out of the market, because entering the market may take time,
effort, and cost. Moreover, it could capture the time and effort required to search for a
counterparty or supplier, the effort and monetary cost of negotiating and verifying contract
terms, or paying other brokerage or settlement fees.4

The second result stated in Theorem 2 states that in the presence of outside options, a
small mass of moldy lemons can generate a large cascade of exits and market shut downs.
The intuition comes from the fact that outside options provide agents reservation utility
against which the utility from trade in the market is compared. Hence, the marginal utility
characterization of the baseline model is replaced by a total utility representation. Using total
utility, the exit of the best type of agent has negative spillover effects on the remaining agents,
as the closing of one market lowers the quantity available at lower price to all remaining
agents and reduces overall utility. Moreover, all remaining market trades require higher
market clearing prices, which makes the outside option more appealing despite each agent’s
high marginal rate of substitution. In this case, the exit of a single good type can cause the

2Though not derived in this paper, a strategic foundation of this allocation is the discriminatory ascending-
price auction in Attar et al. (2021). See subsection 2.3 for more details.

3For example, an outside option is an agent’s reservation value in search and matching models.
4This interpretation is similar to entry fees studied by Bisin and Gottardi (1999, 2003).
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next best agent to exit the market because the relative value of their outside option increases.
Therefore, further exits can happen and remaining agents may suffer additional utility loss
and so on. An important property of our exit cascades Theorem is that it only requires the
first marginal agent’s outside option to be knife-edged and similar to their potential market
utility. Exit cascades occur even as the size of each remaining agent’s outside option declines
relative to their market utility.

Our last analytical result—(Proposition 3)—shows an important comparative static re-
lating the degree of asymmetric information to exit cascades. Economies with more uncer-
tainty regarding the underlying types of the agents are less vulnerable to exit cascades than
economies that feature more known types. More specifically, economies that feature what we
call more coarse partitions of types—weighted averages of multiple types—can be interpreted
as having more uncertainty about the true type of each agent in the partition. Economies
with more coarse partitions are less likely to feature exit cascades for a given mass of moldy
lemons. The reason is that relative weight of each partition is larger when multiple times
comprise it than the weight of each type alone. Thus, a mass of mold lemons sufficient to
generate an exit cascade in an economy with fully disaggregated types may be insufficient
to generate the same amount of exit with a more coarse partition. For example, the cost
increase due to moldy lemons that triggers a cascade, in which agent 1 exiting causes agent
2 to exit, may not be sufficient to cause both agents 1 and 2 to exit as a group when agent 2
exits only because of the spillover effect associated with agent 1’s exit. Therefore, economies
in which there is more precise information or certainty about each agent’s type are more
likely to feature exit cascades. This result provides a theoretical underpinning to the infor-
mation production models of Gorton and Ordoñez (2019); Dang et al. (2020); Gorton and
Ordoñez (2020) in which market failure arise endogenously due to the incentives to produce
private information.

A numerical example confirms the formal results of Theorems 1 and 2 and our compara-
tive static result of Proposition 3. The example also shows that markets are more prone to
shut down as the number of types in the economy grow large and each type is more similar.
In particular, if the masses of adjacent types are combined into a single type with the same
average probability of a bad state as the original partition, then the introduction of moldy
lemons is less likely to cause a cascade of exits. Therefore, markets are more vulnerable to
shutdowns when there are many different types, even when aggregate risk or uncertainty
remain the same. The reason is due to Proposition 3: the sufficient mass of new moldy
lemons needed to trigger market shutdowns increases as the relative mass of existing agents
increases. In other words, if both the best type and the second best type do not know
whether they are the best type or not, the initial trigger of cascade by the best type is less

5



likely to occur.
Overall, our results suggest a parsimonious yet realistic way of generating sudden market

shutdowns without imposing additional structure or institutional details on the model. Thus,
our model is widely applicable to many different markets and contexts, and provides simple
insights on the properties of market shutdowns.

The paper proceeds as follows: Section 2 presents the non-exclusive contracting frame-
work of Attar et al. (2021), and introduces the critical concept of entry-proofness. Section
3 introduces moldy lemons and states Theorem 1. Section 4 introduces outside options,
states Theorem 2 and Proposition 3, and discusses policy implications. Section 5 provides a
numerical example and simulations to show the impact of moldy lemons and outside options
in the non-exclusive contracting environment.

Relation to the Literature. Recent work by Attar et al. (2011, 2014, 2021) charac-
terizes the terms and efficiency of trade in markets with nonexclusive competition. Attar et
al. (2011) show, in a special case with linear utility and capacity constraints, that markets
with nonexclusive competition cease to function for high quality agents alá Akerlof (1970)
and always remain open for the lowest quality agents.5 However, the market will not com-
pletely unravel as agents become more risky due to the linear and continuous nature of the
model. Attar et al. (2014, 2021) consider general preferences and non-linear pricing, but do
not establish a market unraveling result outside of the possibility of not finding a compet-
itive equilibrium as in the Rothschild and Stiglitz (1976). In fact, a deterioration of type
distribution might rather increase the likelihood of positive trades by bad types instead of
triggering a complete market shutdown (which is pooling with zero quantities). Thus, an
Akerlof-esque market unraveling result has not been established in a non-exclusive contract-
ing environment with general preferences and non-linear pricing. The goal of this paper is
to fill this gap in the literature and derive general principles under which small changes in
underlying fundamentals, which we coin the entry of moldy lemons, cause markets subject
to adverse selection with non-exclusive contracting to unravel and shutdown.

Our paper relates to the literature studying non-exclusive contracting in economies with
adverse selection pioneered by (e.g. Pauly, 1974; Jaynes, 1978; Hellwig, 1988; Glosten, 1994).
Allocations in these non-exclusive contracting environments are recursive; agents trade in
layers consisting of multiple contracts.6 More recent results extend to generalized settings
with divisible goods, general preferences, and multiple types (e.g Attar et al., 2011, 2014,

5This is true aside from the trivial case where any buyer’s expected valuation of the good is lower than
the lower bound of the valuation of sellers.

6Bisin and Gottardi (1999, 2003) show that some form of non-linear pricing is needed to make compatible
price taking behavior with asymmetric information.
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2021; Dubey and Geanakoplos, 2019). Among these, our paper builds directly upon Attar
et al. (2021) and Dubey and Geanakoplos (2019) but with a different focus; we study the
conditions under which small changes in the distribution of agents causes markets to unravel.

Our focus on the unraveling of competitive equilibrium due to adverse selection dates
back to Akerlof (1970) and Rothschild and Stiglitz (1976), and recently generalized by Hen-
dren (2013, 2014) and Azevedo and Gottlieb (2017). In the classic example, Akerlof (1970)
shows that markets unravel when the cost to serve the market exceeds the marginal willing-
ness of each agent to trade. More recently, the basic but powerful insight has been embedded
into macro and investment models to explain how information frictions can amplify business
cycles, (e.g. Kurlat, 2013), and how long-term asset markets can suffer self-fulfilling liquidity
freezes (e.g. Malherbe, 2014; Asriyan et al., 2019). Unlike these papers, our model features a
richer non-exclusive contracting environment in which agents are not restricted to trade at a
single market clearing price. We show that with non-exclusive contracts, active markets are
robust to small changes in underlying fundamentals and Akerlof unraveling does not gen-
erally occur. Hendren (2014) shows that equilibrium in insurance economies with exclusive
contracting must unravel either via Akerlof-pricing or failure to satisfy competitive-Nash
equilibrium à la Rothschild-Stigliz when the distribution of types either contains a contin-
uous interval, or the type whose accident probability equals 1. We show that this result
is partially sensitive to competitive contracting as in Azevedo and Gottlieb (2017) and the
exclusive contracting assumption. In general, entry of a type with accident probability equal
to 1 is not sufficient to cause markets to unravel under non-exclusive contracting.

Recent applications of non-exclusive contracting under adverse selection have been ap-
plied to security design (e.g. Asriyan and Vanasco, 2021), and asset markets with heteroge-
neously informed buyers (e.g. Kurlat, 2016). One common feature of non-exclusivity is that
neither security nor asset markets more broadly are fully separating; there is always some
form of cross-subsidization among markets. Our model inherits semi-pooling in equilibrium,
but our focus is on how small changes in underlying fundamentals cause markets to unravel.
Auster et al. (2021) study a form of non-exclusivity in search with adverse selection. Work-
ers can apply to as many jobs as possible, but ultimately sell their labor to a single firm.
Fully separating equilibria are precluded because high types always send some applications
to low-wage-offering firms to hedge against remaining unemployed.

Philippon and Skreta (2012) show that the failure of the price mechanism and market
unraveling justify public interventions during liquidity or credit freezes. A key insight in
their framework is that interventions impact the set of agents that choose to participate
in government programs, which in turn impacts trade in the market. In a nonexclusive
contracting framework, policies that increase entry cost prevent market unraveling only if
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the policy can discriminate among types; otherwise, a uniform cost increase makes markets
more prone to unraveling because the best types exit first, which raises the cost of trade for
all remaining types.

2 Model

The model builds on Attar et al. (2021). We briefly lay out the specifics of the environment
and state the relevant theorems in Attar et al. (2021) that aid in our analysis of the conditions
under which markets shut down as worse types enter the market—i.e., moldy lemons.7

The demand side of the market consists of a finite number of privately informed agents
indexed by i ∈ I ≡ {1, .., n} with a strictly positive measure of each type, mi. Utility for
each type is given by ui (q, t) and assumed to be continuous, quasi-concave in the arguments
and strictly decreasing in t. Generically, q represents the quantity of a good that is consumed
and t is the transfer required to obtain the good. An important feature of the model is that
privately informed types are ordered by a single-crossing property (Milgrom and Shannon,
1994), ∀i < j, q < q′, t, t′:

ui(q, t) ≤ ui(q
′, t′)⇒ uj(q, t) < uj(q

′, t′).

Single-crossing implies that a higher type is at least as willing as a lower type to trade an
additional unit of the good for an additional transfer.8 More generally, we can define a
marginal rate of substitution without assuming differentiable utility functions. Let τi(q, t)
be the supremum set of prices, p, such that

τi(q, t) ≡ sup

{
p : ui(q, t) < max

q′≥0
ui(q + q′, t+ pq′)

}
.

Hence, τi(q, t) is the slope of the indifference curve at an additional quantity, q′ > q, and can
be considered as a (pseudo-)marginal rate of substitution for agent i at consumption bundle
(q, t). An important assumption for our analysis of “moldy lemons” to come is that, absent
a transfer, a strictly positive endowment of q lowers agents’ marginal rate of substitution:

Assumption 1 τi(q, 0) ≤ τi(0, 0), ∀i, q > 0.9

7We refer the reader to their paper for detailed proofs.
8Here we are using strict single-crossing condition rather than weak single-crossing, which allows for

equality. This is because we want to focus on the strict notion of market breakdown in light of Corollary 1
in Attar et al. (2021).

9The same assumption is also used in Attar et al. (2021) in their analysis.
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By way of concrete examples, the model translates into the insurance economy of Roth-
schild and Stiglitz (1976), where i indicates an agent’s probability of loss, q is the amount
of insurance purchased, and t is the insurance premium. In a credit economy, i indexes bor-
rower default probability, q is the loan quantity demanded, and t is the gross loan promise
made to the lender.

Contracts, defined by the pair (q, t) for q ≥ 0, are supplied by competitive risk-neutral,
expected profit maximizers. The suppliers possess a linear production technology with a
unit cost, ci > 0, which is increasing in i. Adverse selection occurs if ci is increasing in type
with the single-crossing condition. That is, higher types wish to trade more than low types,
but the cost of servicing these types is higher. Define by c̄i the expected unit cost of serving
j ≥ i (the upper-tail conditional expected cost) given that higher types will be willing to
trade any contract offered to type i. Formally,

c̄i ≡ E[cj|j ≥ i] =

∑
j≥i
mjcj∑

j≥i
mj

. (1)

2.1 The Concept of Entry-proof, Inactive Markets

An inactive market cannot be an equilibrium if an entrant can propose a set of contracts
that leads to positive trades with nonnegative profits. In other words, an inactive market
must be resilient to entry and “entry-proof” as proposed by Attar et al. (2021). We first
describe when an inactive market is entry-proof and then describe when active markets are
entry-proof.

The key is to first consider the no-trade contract, (0, 0), as any agent’s outside option.
Then, a market is entry proof iff, for any menu of contracts an entrant offers, the buyer’s
best response earns the entrant zero expected profit. That is, the entry-proof condition is
given by

Condition EP : τi(0, 0) ≤ c̄i ∀i. (2)

Condition EP simply says that there will be no trade in a market when the cost of offering
a contract for agent i exceeds type i’s marginal utility of not trading, given that all other
types higher than i must also be served.10 Theorem 1 in Attar et al. (2021) states that
Condition EP is necessary and sufficient for markets to be inactive.

10We will use contracts and markets interchangeably. We want to think about all contracts with poten-
tially different price-quantity pairs as individual markets following Bisin and Gottardi (1999); Dubey and
Geanakoplos (2002); Dubey et al. (2005).
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We sketch the proof here since the arguments are useful in our extensions. The single-
crossing condition implies that an entrant offering an arbitrary menu of contracts will end
up trading (qi, ti) with type i and qj ≥ qi with all agents j ≥ i. The expected profit to the
entrant of this menu is

∑
imi [ti − ciqi]. Using summation by parts, the expected profit can

be written in terms of layers (qi−qi−1) and (ti−ti−1):
∑

i

(∑
j≥imj

)
[ti − ti−1 − ci(qi − qi−1)],

where (q0, t0) ≡ (0, 0). Moreover, it must be the case that agent i is willing to trade the
additional layer on top of the original set of contracts that yielded (qi−1, ti−1), if the entrant’s
offer is accepted. That is, the marginal rate of substitution of agent i at the original allocation
times the new layer must exceed its cost: τi(qi−1, ti−1)(qi− qi−1) > ti− ti−1. In addition, the
entrant cannot make a loss on each type given the expected cost, ci, to serve all types j > i

that will also accept the contract. Therefore, ti − ti−1 − ci(qi − qi−1) ≥ 0. Single-crossing
implies that qi ≥ qi−1, so combining the two previous inequalities, entry will be non-profitable
when τi(qi−1, ti−1) ≤ ci. Then, using the fact that type i−1 prefers their optimal trade to no
trade, we have τi−1(qi−1, ti−1) < τi−1(0, 0), and so does type i. Invoking the assumption that,
absent transfers, agents’ marginal rate of substitution is weakly decreasing in quantities,
τi(qi, 0) ≤ τi(0, 0), where q

i
∈ [0, qi−1] is the quantity that makes agent i indifferent between

(qi−1, ti−1) and (q
i
, 0). Finally, by quasi-concavity of preferences, τi(qi−1, ti−1) ≤ τi(qi, 0), we

have the desired result τi(qi−1, ti−1) ≤ τi(qi, 0) ≤ τi(0, 0) ≤ ci.
We consider a notion of market breakdown proposed by Attar et al. (2021) where any

menu of contracts that strictly attracts at least some agents yields a strictly negative expected
profit, even if the buyer’s best response is most favorable to the entrant. A corollary to
Theorem 1 is that this notion of market breakdown occurs if and only if Condition EP is
satisfied when the preferences are strictly convex and strict single-crossing holds. Hence, our
notion of market shutdown is equivalent to Condition EP.

2.2 The Concept of Entry-proof, Active Markets

The main question we are after is, under what conditions does the entry of worse type buyers
(or a worsening of the buyer type distribution) cause active markets to shut down? In order
to answer this question, we first ask when active markets are entry-proof in the sense that
entry of a supplier is unprofitable. Armed with the answer to the latter question based on
Attar et al. (2021), we can answer the former.

Trade in the market is non-exclusive in the sense that no agent can be stricken from
trading with multiple firms or suppliers. Therefore, we must define the market tariff, or
the minimum aggregate transfer that is made across active markets to obtain aggregate
consumption, q. Define the aggregate market tariff by T (q). We will assume that T (q)
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is convex and the domain is a compact interval with lower bound equal to 0. Then, all
agents choose qi to maximize ui(qi, T (qi)). An allocation, (qi, T (qi))i∈I is implemented by
the market tariff, T , if qi = arg maxq ui(q, T (q)). This allocation is budget feasible if suppliers
make non-negative expected profits at the market tariff∑

i

mi [T (qi)− ciqi] ≥ 0. (3)

Under exclusive contracting environment, an entrant only needs to consider the agent’s
direct utility functions. However, under non-exclusive contracting environment, an agent
can combine any menu of potential new contracts with trades along the existing market
tariff, T . Thus, an active market is entry proof if an entrant cannot make positive expected
profits given agents’ ability to combine contracts. Therefore, the entrant faces types with
indirect utility functions of trading a proposed new contract (q′, t′) in addition to the existing
allocation (q, T (q)):

uTi (q′, t′) ≡ max {ui(q + q′, T (q) + t′ : q)} (4)

From the entrant’s perspective, an agent’s individual rationality constraint is determined
by the indirect utility of not trading the proposed contract on top of the existing market tariff,
uTi (0, 0). We can define the marginal rate of substitution along the indirect utility functions
as above by τTi (q′, t′).11 As shown by Attar et al. (2021), the indirect utility functions will
also satisfy single-crossing because the primitives satisfying the same condition.

Attar et al. (2021) proposes an additional assumption, which is slightly strong than
Assumption 1, implying that the marginal rates of substitution are nonincreasing in q for
any type i and transfer t:

Assumption 2 For all i and t, τi(q, t) is nonincreasing in q.

Intuitively, this assumption implies that a higher quantity always reduces each agent’s will-
ingness to pay for any additional quantity. For the given market tariff, T , and the allocation,
(qi, T (qi)), we can define τTi (0, 0) as the supremum of the set of prices p for the indirect utility
function, uTi (0, 0)—that is,

ui(qi, T (qi)) = uTi (0, 0) < max
{
uTi (q′, pq′) : q′

}
= max {ui(q + q′, T (q) + pq′ : q, q′)} .

11This is possible because: 1) the maximizers in (4) are continuous from Berge’s Maximization Theorem;
2) the market tariff, T , is convex; 3) the utility functions, ui(q, t), are weakly quasi-concave in (q, t) and
strictly decreasing in t; 4) and, hence, the indirect utility functions uT

i are weakly quasi-concave in (q, t) and
strictly decreasing in t.
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With this, we can invoke the necessity and sufficiency result of Condition EP to state
that a market tariff is entry-proof iff:

∀ i, τTi (0, 0) ≤ ci. (5)

This condition states that an active market is entry-proof if and only if the cost required
to enter the market exceeds the willingness of each agent to trade the contract on top of
the allocation they may already obtain. For each agent, the utility they receive from their
market trades must be at least as large as trading the proposed new contract given the cost
required to serve the market:

for each i, ui(qi, T (qi)) ≥ max {ui(q + q′, T (q) + ciq
′ : q, q′)} . (6)

From the entrant’s perspective, by convention of letting q0 ≡ 0, setting q′ = qi − q, and
applying condition (6) for each layer, q ∈ [qi−1, qi], we see that the implied market tariff
necessary to induce entry must be at least as large as the pre-entry tariff:

for each i and q ∈ [qi−1, qi], T (qi) ≤ T (q) + ci(qi − q). (7)

For a given q = qi−1, we have T (qi) ≤ T (qi−1) + ci(qi− qi−1). Using the budget-feasibility
condition from (3), and re-writing it in terms of layers, we have

∑
i

(∑
j≥i

mj

)
[T (qi)− T (qi−1)− ci(qi − qi−1)] ≥ 0. (8)

Therefore, combining (7) and (8) implies

T (qi) = T (qi−1) + ci(qi − qi−1). (9)

It must also be true that the allocation, ui(qi, T (qi)), implied by the new layer, qi − qi−1

maximizes the utility of all the agents that choose it, given that the new market tariff must
rise to serve all agents. Hence, for each i,

ui(qi, T (qi)) = max {ui(qi−1 + q′, T (qi−1) + ciq
′ : q′)} . (10)

Finally, because the tariff is convex and satisfies (7) and (10), it must be affine with slope ci
over the interval [qi−1, qi].

With this, Attar et al. (2021) state Theorem 2—An allocation (qi, T (qi))i∈I is budget-
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feasible and implemented by an entry-proof convex market tariff, T , with domain [0, qn] if
and only if

1. (q0, T (q0)) ≡ (0, 0),

2. qi − qi−1 ∈ arg max {ui(qi−1 + q′, T (qi−1) + ciq
′ : q′)} for each i,

3. qi−1 < qi ⇒ T is affine with slope ci over [qi, qi−1] for each i.

To sum up, an affine convex market tariff is entry proof as long as the upper-tail con-
ditional cost of entry exceeds the marginal willingness of all agents to trade the additional
layer on top of their pre-entry allocation. This market tariff consists of layers of trade with
unit prices ci that trace out a polygon with an upward kink at each qi+1 ≥ qi for each i ∈ I.

2.3 Discussion of Strategic Foundations

We are taking the strategic foundations of the allocations from Theorem 2 in Attar et al.
(2021) state above as given. There are two ways to micro-found this allocation. The first is
the discriminatory ascending-price auction used in Attar et al. (2021). In particular, each
time a new price is quoted, each seller publicly announces the maximum quantity he stands
ready to trade at this price. Once this auctioning phase is completed, the buyer decides
which quantities to purchase from which sellers in a nonexclusive way. The second is the
notion of competitive-pooling in general equilibrium pioneered by Dubey and Geanakoplos
(2002) and extended to a non-exclusive contracting by Dubey and Geanakoplos (2019).

One final issue with the entry-proof market tariff of Attar et al. (2021) worth noting is
uniqueness. The convex market tariff is unique if the solution to each agent’s maximization
problem is unique. This is guaranteed if the agents’ preferences are strictly convex, which
we assume to be the case. The problem of multiplicity arises only if the marginal rate of
substitution of some type i equals c̄i over a whole interval of quantities, which is not a generic
phenomenon (Attar et al., 2021).

3 Moldy Lemons

We now ask what happens to trades and the market tariff as increasingly worse types of
agents enter the economy. What we have in mind are situations for which firms anticipate a
very high cost of serving some types of agents who may generate losses with near certainty.
For example, the COVID-19 pandemic led to a surge in defaults. Our notion of market
shutdown is equivalent to the comparative static in which active markets become inactive in
equilibrium, hence no trade.
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To fix ideas, assume that a new agent of type n+1 (a “moldy lemon”) enters the economy
with massmn+1. The cost to serve this agent is cn+1 > cn. Given that the unit cost of serving
agent n + 1 is strictly greater than the unit cost of serving any other agent, the upper-tail
conditional expected cost of serving all agents must also rise. Specifically, the new upper-tail
conditional expected cost for any agent i is given by

c̃i ≡
∑

j≥imjcj +mn+1cn+1∑
j≥imj +mn+1

, (11)

and c̃i > ci. Then, it is clear that any market that was inactive ex ante agent n + 1 enters
remains inactive ex post because Condition EP implies τi(0, 0) ≤ ci < c̃i. Intuitively,
making the average quality of the pool worse will never lead to the opening of new markets.

Next, does the arrival of agent n+1 lead any active markets to become inactive and shut
down? Recall that an active-market is subject to entry if the marginal willingness to trade
for all agents is greater than the upper-tail conditional cost to serve them. Then, if a market
was active and τi(0, 0) > c̃i and q̃i > q̃i−1 for some i, the market will remain active with a new
equilibrium level of aggregate trade given by quantities (q̃i)i∈N . Intuitively, active markets
must be characterized by terms of trade that do not make agents worse off compared with
not trading. If there is at least one type of agent that is lower than type n+1 willing to trade
in a market given that the cost will rise, then the market will not close despite the presence
of type n + 1. Moreover, type n + 1 causes the slope of the market tariff to rise along all
segments of the polygon that trace out the new market tariff, T̃ (q̃). Finally, active markets
cease to remain active only when τ T̃i (0, 0) ≤ c̃i, and q̃i > q̃i−1 ∀i. From (11), moldy lemons
lead to market breakdowns only when their mass, mn+1 is sufficiently large. Formally, we
have the following:

Theorem 1 (Moldy Lemons)
Suppose the economy is populated with additional type n+1 (moldy lemons) with mass mn+1

and cn+1 > cn. Then, for the new equilibrium affine aggregate tariff, T̃ , and new quantities,
(q̃i)i∈N∪{n+1}, the following hold:

1. All inactive markets (market shutdown) remain inactive under the new equilibrium.

2. All active markets will remain active and have the new steeper equilibrium slope for
the aggregate tariff, T̃ , as ˜̄ci > c̄i over [q̃i−1, q̃i] for every i, if q̃i > q̃i−1.

3. Active markets become inactive and shut down iff τ T̃i (0, 0) ≤ ˜̄ci and q̃i = q̃i−1 for each
i.

14



Proof. Statements 1 and 3 are trivial as explained in the discussion before the theorem.
We show that statement 2 holds.

First, consider type 1. Suppose that agent 1 was trading a positive quantity q1 > 0,
without loss of generality. Suppose that type 1 agent exits the market after the entry of
moldy lemons. Then, the quantity demanded trivially decreases as q̃1 = 0 < q1, and the
market tariff increases as T̃ (q) ≥ ˜̄c2q > c̄2q > c̄1q for any q in [0, q1] and [q1, q2], regardless
of the new trading quantities q̃2, q̃3, . . . , q̃n. Suppose that type 1 agent still trades a positive
quantity in the market. The market tariff trivially increases to T̃ (q) = ˜̄c1q for any q in [0, q̃1]

as in the previous case. Given the new optimal quantity for type 1, q̃1, type 2 agent will face
a higher slope of the affine tariff for the quantity q̃2 ≥ q̃1 as

T̃ (q̃2)− T̃ (q̃1)

q̃2 − q̃1
≥

˜̄c1q̃1 + ˜̄c2(q̃2 − q̃1)− ˜̄c1q̃1
q̃2 − q̃1

= ˜̄c2 > c̄2 =
T (q2)− T (q1)

q2 − q1
,

because ˜̄cj > c̄j for any j.
Now consider an arbitrary type i > 2. Following the previous argument results in

T̃ (q̃i)− T̃ (q̃i−1)

q̃i − q̃i−1
≥
∑

j<i
˜̄cj (q̃j − q̃j−1) + ˜̄ci(q̃i − q̃i−1)−

∑
j<i

˜̄cj (q̃j − q̃j−1)
q̃i − q̃i−1

= ˜̄ci

> c̄i =
T (qi)− T (qi−1)

qi − qi−1
,

with the convention q̃0 ≡ 0. Thus, the new slope for the affine market tariff T̃ becomes
steeper in each and every interval of the new optimal quantity layers.

Theorem 1 states general properties of active and inactive markets under the new equi-
librium. One important implication is that active markets will completely shut down only
if τi(0, 0) ≤ ˜̄ci for all i. Hence, the mass of moldy lemons, mn+1, should be large enough to
generate market shutdowns.12 Our market shutdown result extends the Akerlof-like unravel-
ing result established in the non-exclusive contracting setting of Attar et al. (2011) to more
general preferences and non-linear pricing. Their paper shows that even in the strategic
setting of Rothschild and Stiglitz (1976), equilibrium always exists and is unique with non-
exclusive competition. Hence markets fail in the Akerlof sense when the unique equilibrium
is the no-trade equilibrium. More surprising, Theorem 1 above shows that no trade occurs in
non-exclusive settings precisely when the separating equilibrium of Rothschild and Stiglitz
(1976) exists.

Our next result addresses which layers are most susceptible to agents exiting. The single-
12Azevedo and Gottlieb (2017) show a similar result under an exclusive contracting environment. Hence,

we are extending their results to non-exclusive contracting environment.
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crossing condition implies that higher types have higher willingness to trade at higher prices.
Hence, as worse types enter the market and increase the market tariff along each layer, the
lowest types exit the market first. This is easiest to see for the case where the first type i = 1

is just indifferent to trading given the upper-tail conditional cost of serving all greater types
j > 1 where τi (0, 0) = ci < c̃i, while other agents j > 1 could still have τ T̃j (0, 0) > ˜̄cj. In this
case, type 1 is no longer willing to trade at the new market tariff, T̃ (q̃), given the additional
cost required to make the tariff budget-feasible while all types j > 1 remain active in the
market. Hence, only the first layer of trade, q1, becomes inactive.

Proposition 1 In equilibrium, the lowest type (cost) agents exit first as mn+1 increases.

Proof. First, the marginal rate of substitution, τi(q, t), is nonincreasing in q. Second, utility,
ui(q, t), is continuous and decreasing in t. Combining this with strict single-crossing, we have
ui−1(0, 0) ≤ ui−1(q̃i−1, T̃ (q̃i−1)) ⇒ ui(0, 0) < ui(q̃i−1, T̃ (q̃i−1)). By continuity, there exists
mi

n+1 such that T̃ makes ui−1(0, 0) > maxq ui−1(q, T̃ (q)) and ui(0, 0) < maxq ui(q, T̃ (q)).
Again by single-crossing, if i− 1 exits, then any type j < i− 1 also exits.

An important implication of Proposition 1 is that the arrival of moldy lemons (worse than
worst types) has only a marginal negative effect on active markets. The reason is that when
the first type drops out and the first layer of trade, (q1, T̃ (q1)), is removed from the market,
the marginal value of each remaining layer for each agent goes up relative to the alternative
of no trade at (0, 0). In other words, τi(0, T̃ (0)) ≥ τi(q1, T̃ (q1)). Hence, the spillovers from
agents exiting increase rather than decrease the incentives for all remaining agents to trade.
This force keeps the remaining markets active. On the one hand, Condition EP is very
robust in the sense that a complete unraveling with non-exclusive contracting requires a
tautological extremely large mass of bad types. On the other hand, there is a gap between
the model and the real world phenomena that exhibit a sudden collapse of the markets after
hitting the tipping point of the severity of adverse selection (Beltran et al., 2017; Calomiris
and Gorton, 1991; Covitz et al., 2013; Mishkin, 1999; Ivashina and Scharfstein, 2010; Foley-
Fisher et al., 2020).

4 Outside Options and Market Shutdown

We now show that a cascade of exits—a sequential shut down of multiple markets—is possible
upon entry of a small mass of moldy lemons when outside options are present. An outside
option may be thought of as an alternative to entering the market, which requires either
a contractual barrier or a cost of entry. For example, signing a contract or searching for
the right supplier may require significant time and effort. Alternatively, it may represent an
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external market into which agents can enter and secure a reservation utility. The important
point is that agents compare outside utility to their utility from market trades.

Denote the utility from outside options (and not entering the market) as γi for type
i. Type i now compares the set of market contracts to their outside option. Thus, the
individual rationality condition for i becomes

Vi(T ) = max

{
γi,max

q≥0
ui(q, T (q))

}
(12)

for a given aggregate market tariff T .13

In general, there are two ways in which asymmetric information generates market un-
raveling. The first is Akerlof (1970) unraveling where trade breaks down and the zero-trade
point is the unique equilibrium. The second notion of market unraveling relates to the non-
existence of competitive equilibrium studied by Rothschild and Stiglitz (1976). It turns out
that both notions of market unraveling are possible in our framework depending on the dis-
tribution of the value of outside options across agents. The following sub-sections present
each case in turn.

4.1 Akerlof Unraveling: Cascade of Exits

In this subsection, we present our main result that a sequential market shutdown results
from a cascade of exits. The main mechanism for the market shutdown is based on the
spillover effects of exits across agents in the presence of outside options. We show that the
form of spillovers needed to generate a market shutdown do not exist in the model without
outside options.

We assume the following condition on the distribution of outside option values:

ui(q, t) ≥ γi ⇒ uj(q, t) > γj ∀i < j, ∀q > 0, ∀t. (13)

This condition implies that if agent i prefers a contract (q, t) with a positive quantity to the
outside option, then agent j > i also prefers the contract to the outside option, which is in
line with the idea of single-crossing property. We discuss the role and micro-foundation of
this assumption in subsection 4.3.

Agents who enter the market optimize their utility for the given aggregate market tariff
just as in the baseline model without outside options. Therefore, the arguments in Theorem
2 of Attar et al. (2021) for budget feasible, entry-proof market tariffs also hold with outside
options. In particular, the aggregate entry-proof convex market tariff is T with the slope

13Note outside options are irrelevant for equilibrium when they provide utility less than no trade.
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of c̄i for each layer [qi−1, qi] for each i with the convention of q0 = 0. Therefore, the same
arguments used in statements 1 and 2 in Theorem 1 and Proposition 1 hold here, and we
can say the following.

Proposition 2 In any active market equilibrium, there is a cutoff-type θ ∈ N ∪ {0} such
that any agents with type less than or equal to θ exit the market and any agents with type
greater than θ remain in the market.

Proposition 2 follows from Proposition 1, as the lowest type agents exit first in any
active market equilibrium. Proposition 2 will be important for eliminating any possible
nonexistence of equilibrium discussed in the following subsection 4.2.

We now use Proposition 2 to discuss how exits of lowest type agents can generate a further
cascade of exits. Agents decide to enter/remain in the market by comparing the total utility
they achieve through market trades with the value of their outside option. Therefore, agents
exit the market when outside options offer more utility than market trades. Because the
lowest types exit first, all remaining agents face a higher aggregate market tariff, which
lowers the total utility of the remaining higher types. Different from the baseline model
without outside options, all remaining agents compare their total utility from market trades
with their outside options. By contrast, without outside options, remaining agents only
compare their marginal rate of substitution at no-trade with the aggregate market tariff as
in equation (2). Therefore, the existence of outside options can create a cascade of exits
and generate a larger decline of quantities traded compared with the baseline model without
outside options.

We now formalize the cascade of exit argument. Suppose, without loss of generality,
that at least agent 1 exits the market after the entry of moldy lemons, which occurs when
Condition IT holds:

max
q≥0

u1(q, ˜̄c1q) ≤ γ1. (14)

Note that we do not need to check Condition EP, τ1(0, 0) ≤ ˜̄c1, because each agent prefers
the outside option over the no-trade contract as γ > ui(0, 0) for any i. We can extend this
intuitive condition to a condition that any agent with type j that is below i exits the market.
We denote such a condition, Condition ML(i)–Moldy Lemons, as:

max
q≥0

uj (q, ˜̄cjq) ≤ γj, ∀j < i, (15)

where agents up to type i exit the market. Condition ML(i) is stricter than Condition
EP because there is an additional case that prevents entry. Therefore, agents who did not
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exit the market under Condition EP may exit under Condition ML(i). We formally
show that Condition ML(i) is necessary and sufficient to generate a cascade of exits up to
agent i.

Theorem 2 (Cascade of Exits) Any agent j < i exits the market in equilibrium iff Con-
dition ML(i) is satisfied.

Proof. The proof of sufficiency is straightforward as Condition ML(i) prevents entry of
agents with type j < i for the entry-proof market tariffs.

Now consider the proof of necessity. By Proposition 2, we check the lowest agent’s entry
decision for each candidate equilibrium. Consider an equilibrium in which agent 1 also enters
the market. Then, the corresponding aggregate market tariff will be

T 0(q) ≡
∑
i∈N

˜̄ci(q − qi−1)1 {q ∈ [qi−1, qi]} ,

which is based on the same quantities {qi}i∈N as in the equilibrium before the moldy lemons
entered, where 1 {·} is an indicator function. Under Condition IT, (14), type 1 agent exits
the market and the updated aggregate market tariff is

T 1(q) ≡
∑
i∈N

˜̄ci(q − q1i−1)1
{
q ∈ [q1i−1, q

1
i ]
}
,

where q1i − q1i−1 ∈ arg max
{
ui(q

1
i−1 + q, T 1(q1i−1) + ˜̄ciq : q

}
with q11 = 0. The exit of agent

1 lowers the utility of each agent because the first layer over the interval [0, q1] with the
lowest tariff, ˜̄c1, disappears. Also, by the same arguments in the proof of Theorem 1, all the
remaining agents are participating in the market with the higher average cost of service due
to moldy lemons. Thus, agents i > 2 trading the next available lowest cost interval, [q1, q2],
suffer further utility declines even without the exit of agent 2. If the new aggregate market
tariff, T 1, induces agent 2 to exit, then it must be the case that

max
q≥0

u2
(
q, T 1(q)

)
= max

q≥0
u2 (q, ˜̄c2q) ≤ γ2,

and exiting the market gives higher utility to agent 2.
Now extend the argument recursively to finish the proof by mathematical induction. For

an arbitrary k < i, suppose that under any candidate equilibrium, agents up to k exit the
market. Then, the new market tariff becomes

T k(q) ≡
∑
i∈N

˜̄ci(q − qki−1)1
{
q ∈ [qki−1, q

k
i ]
}
,
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where qki − qki−1 ∈ arg max
{
ui(q

k
i−1 + q, T k(qki−1) + ˜̄ciq : q

}
with qk1 = · · · = qkk = 0. If agent

k + 1 exits the market under T k, then

max
q≥0

uk+1

(
q, T k(q)

)
= max

q≥0
uk+1 (q, ˜̄ck+1q) ≤ γk+1

should hold, because agent k+1 will still enter the market otherwise. If the above inequality
does not hold, then the equilibrium of active markets is determined starting from qk+1 > 0

and the initial assumption of qk+1 = 0 is violated. Therefore, Condition ML(i) is necessary.

Outside options have two roles. First, they generate discontinuous jumps in market
quantities, qi, after the entry of moldy lemons. A small mass of moldy lemons mn+1 will
trigger type i agent to exit with strictly positive quantity qi when i’s utility is close to the
utility from the outside option as ui(qi, T (qi)) ≈ γi. By contrast, quantities always change
smoothly without outside options. Second, outside options generate negative spillovers that
can trigger discontinuous exist cascades.14

We now consider how the distribution of types impacts the exit cascade result in The-
orem 2. Specifically, how does the coarseness of agent types impact exit cascades? Let
{I,m, u, c, γ} represent an economy where m = {mi}i∈I , u = {ui}i∈I , c = {ci}i∈I , and γ =

{γi}i∈I . Consider another economy, {Î , m̂, û, ĉ, γ̂}, that is a coarser partition of {I,m, u, c, γ}
if the following holds:

1. Î ⊂ I.

2. If i ∈ Î and i+ 1 ∈ Î, then m̂i = mi, ûi = ui, and ĉi = ci.

3. If i ∈ Î and i + 1, . . . , i + k /∈ Î, while i + k + 1 ∈ Î or i + k + 1 > n, where
k ≥ 1, then agent i ∈ Î includes agents i, i + 1, . . . , i + k ∈ I and m̂i =

∑k
l=0mi+l,

ûi(q, t) =

∑k
l=0mi+lui+l(q, t)∑k

l=0mi+l

, ĉi =

∑k
l=0mi+lci+l∑k

l=0mi+l

, and γ̂i =

∑k
l=0mi+lγi+l∑k

l=0mi+l

.

The above definition implies that a coarser partition of an economy groups adjacent
types of agents into one type. The mass of the new type of agent is equal to the sum of all
masses for each type in the group, and the servicing cost and outside option values are the
weighted average cost and outside option values, respectively. The utility of this new agent
is the weighted average utility across different types. For example, for I = {1, 2, 3, 4, 5} and

14This mechanism is similar to the worsening adverse selection after a price increase in Stiglitz and Weiss
(1981).
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Î = {1, 2, 4}, {Î , m̂, û, ĉ, γ̂} is a coarser partition of {I,m, u, c, γ}, if

m̂ = {m1,m2 +m3,m4 +m5}

û =

{
u1,

m2u2 +m3u3
m2 +m3

,
m4u4 +m5u5
m4 +m5

}
ĉ =

{
c1,

m2c2 +m3c3
m2 +m3

,
m4c4 +m5c5
m4 +m5

}
γ̂ =

{
γ1,

m2γ2 +m3γ3
m2 +m3

,
m4γ4 +m5γ5
m4 +m5

}
.

Note that the upper-tail conditional expected cost remains the same.

Proposition 3 Let {Î , m̂, û, ĉ, γ̂} be a coarser partition of {I,m, u, c, γ} with i ∈ Î and
i + 1 /∈ Î. Then, there exists a moldy lemon mass, mn+1, such that i does not exit in
{Î , m̂, û, ĉ, γ̂}, while i exits in {I,m, u, c, γ}. Furthermore, if i ∈ Î exits in {Î , m̂, û, ĉ, γ̂},
then i ∈ I exits in {I,m, u, c, γ}.

Proof. First, we show that if the entry of a mass of moldy lemons mn+1 causes the new
type i ∈ Î to exit in the coarser partition {Î , m̂, û, ĉ, γ̂}, then agent i exits in the original
economy {I,m, u, c, γ}. Suppose that i ∈ Î, i + 1, . . . , i + k /∈ Î, and i + k + 1 ∈ Î, i exits
the market in the economy {Î , m̂, û, ĉ, γ̂}. Thus,

max
q≥0

[
miui(q, ˜̄ciq) + · · ·+mi+kui+k(q, ˜̄ciq)

mi + · · ·+mi+k

]
≤ γ̂ =

miγi + · · ·+mi+kγi+k

mi + · · ·+mi+k

holds. Suppose the contrary that i does not exit the market in the economy {I,m, u, c, γ}.
Then,

max
q≥0

ui(q, ˜̄ciq) = ui(qi, ˜̄ciqi) > γi.

Thus, for each l, ui+l(qi, ˜̄ciqi) > γi+l holds by (13), where 1 ≤ l ≤ k. However, this implies
the weighted average of utilities would exceed the weighted average of outside options. In
other words,

max
q≥0

[
miui(q, ˜̄ciq) + · · ·+mi+kui+k(q, ˜̄ciq)

mi + · · ·+mi+k

]
≥ miui(qi, ˜̄ciqi) + · · ·+mi+kui+k(qi, ˜̄ciqi)

mi + · · ·+mi+k

> γ̂,

which is a contradiction.
Now we show the converse that agent i, who exits the market in the economy {I,m, u, c, γ}

due to the entry of moldy lemons with mass mn+1, may not exit in the coarser partition
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{Î , m̂, û, ĉ, γ̂} with the same mass of moldy lemons entering the market. Suppose that i ∈ Î,
i+ 1, i+ 2, . . . , i+ k /∈ Î, and i+ k + 1 ∈ Î. Agent i exits the market, if

max
q≥0

ui(q, ˜̄ciq) ≤ γi. (16)

By continuity of the utility function, maximand (by Berge’s maximum theorem), and upper-
tail conditional expected cost, the left-hand side of (16) is continuously decreasing in the
moldy lemon mass mn+1. Then, there exists m such that when mn+1 = m,

max
q≥0

ui(q, ˜̄ciq) = ui(qi, ˜̄ciqi) = γi.

For each l, ui+l(qi, ˜̄ciqi) > γi+l holds by (13), where l ≥ 1. Again, the utility of i ∈ Î, the
weighted average of utilities, become

max
q≥0

[
miui(q, ˜̄ciq) + · · ·+mi+kui+k(q, ˜̄ciq)

mi + · · ·+mi+k

]
≥ miui(qi, ˜̄ciqi) + · · ·+mi+kui+k(qi, ˜̄ciqi)

mi + · · ·+mi+k

> γ̂ =
miγi + · · ·+mi+kγi+k

mi + · · ·+mi+k

,

and type i ∈ Î agent does not exit. Hence, there exists a moldy lemon mass mn+1 = m,
which makes i to exit in {I,m, u, c, γ} but not in {Î , m̂, û, ĉ, γ̂}.

This result shows that markets are less vulnerable to shutdowns and exit cascades when
the partition of types in the economy becomes coarser. At the other extreme, exit cascades
are more likely when the distribution of types is close to a continuum. The reason is that
the sufficient mass of new moldy lemons needed to trigger market shutdowns increases as
the relative mass of exiting agents increases.

A corollary of Proposition 3 is that markets can be more vulnerable to exits as the
number of types in the economy grows large despite no change in underlying aggregate risk
or uncertainty. The result emphasizes why having multiple types in the model is important
for generating large swings in trade with a small mass of moldy lemons. Thus, a model with
only two types, while tractable and perhaps sufficient to highlight certain forces, does not
correctly capture the vulnerability of the market to exit cascades more generally.

We believe this result is apt to describe the recent CLO-market freezes. CLOs are pur-
chased by an increasing variety of agents, such as banks, insurance companies, private equity
funds, mutual funds, etc. Proposition 3 suggests that these markets are more likely to dry
up with only a small change in fundamentals, as more agents become prominent players in
the market.
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4.2 Rothschild-Stiglitz Unraveling

In this subsection we focus on the case in which equilibrium does not exist—that is, Roth-
schild and Stiglitz (1976) unraveling—similar to the nonexistence of equilibrium in Attar et
al. (2014). A necessary condition for the non-existence of equilibrium is that assumption
(13) does not hold.15 Everything else in the model remains the same.

Suppose the moldy lemons, type n+ 1 with cn+1 > cn, enter the market. Without loss of
generality, we assume that all agents enter the market in the equilibrium before the moldy
lemons joined. As in the previous section, the new upper-tail conditional expected cost is
given by (11). Denote equilibrium quantities by q̃i for each i that enters the market where

q̃i − q̃i−1 ∈ arg max
q

{
ui

(
q̃i−1 + q, T̃ (q̃i−1) + ˜̄ciq

)
: q
}
,

and T̃ (q) is the equilibrium aggregate affine tariff with slope ˜̄ci over [q̃i−1, q̃i]. In addition,
set q̃0 = q̃j = 0 for any j who exits the market.

In this case, agent entry and exit decisions in equilibrium may be either strategic comple-
ments or substitutes à la Bulow et al. (1985). Suppose that type i agent does not enter the
market in equilibrium, and for simplicity, suppose that all other agents do enter the market.
The rest of the arguments go through even if there are other agents who exit the market.
Since i exits the market, q̃i = 0 and

T̃ (q̃i+1)− T̃ (q̃i−1) = ˜̄ci+1 (q̃i+1 − q̃i−1) .

Now compare that to a hypothetical equilibrium with the same quantities (q̃j)j<i and corre-
sponding market tariff T̃ in which type i enters the market. Hence, q̃i > q̃i−1 and

T̃ (q̃i+1)− T̃ (q̃i−1) = ˜̄ci+1 (q̃i+1 − q̃i) + ˜̄ci (q̃i − q̃i−1) < ˜̄ci+1 (q̃i+1 − q̃i−1) ,

implying that i + 1 will have higher utility under this quantities and market tariff. By the
same logic that utilities are increasing when lower types are present applies to all agents
greater than i. Because their utilities in the market increase, agents with type greater than i
are more likely to enter the market when i enters the market. Therefore, an entry of a lower
type agent generates one-way strategic complementarity to higher type agents.

However, the effect can go the other way for agent j with type lower than i, i.e. j < i. If
15Theorem 1 of Attar et al. (2014) shows that an equilibrium exists only if the adverse selection problem

is severe enough, implying that different types’ incentives are not too closely aligned.
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the upper-tail conditional expected cost of agent j excluding i is less than ci—that is,

T̃ (q̃j)− T̃ (q̃j−1)

q̃j − q̃j−1
=

∑
k≥j,k 6=imkck∑
k≥j,k 6=imk

< ci,

then the entry of i will increase the upper-tail conditional expected cost for agents with type
j and lower, as the new upper-tail conditional expected cost is∑

k≥j,k 6=imk∑
k≥j mk

∑
k≥j,k 6=imkck∑
k≥j,k 6=imk

+
mi∑
k≥j mk

ci,

which is a convex combination of
T̃ (q̃j)− T̃ (q̃j−1)

q̃j − q̃j−1
and ci, so

T̃ (q̃j)− T̃ (q̃j−1)

q̃j − q̃j−1
=

∑
k≥j,k 6=imkck∑
k≥j,k 6=imk

<

∑
k≥j,k 6=imk∑

k≥j mk

∑
k≥j,k 6=imkck∑
k≥j,k 6=imk

+
mi∑
k≥j mk

ci.

Because of this cost increase, agent j’s maximum utility in the market decreases, and j

may exit the market because of it. Hence, an entry of a higher type agent can generate
one-way strategic substitutability to a lower type agent. Therefore, the overall effect of the
equilibrium remains ambiguous.

Because of the potential strategic substitutability, there can be no equilibrium stemming
from the interaction between strategic complements and strategic substitutes, which is similar
to how an equilibrium breaks down in Rothschild and Stiglitz (1976). For a simpler example,
suppose that type n agent exits the market because the aggregate market tariff T is too high
compared to n’s outside option, i.e. maxq un(q, T (q)) ≤ γn. However, the exit of n decreases
T to T †, which may make n want to enter again. Then, the entry of n will change (increase) T †

to T again, which will make n want to exit again. Furthermore, the entry or exit could affect
other agents i < n in the market to exit or enter the market, complicating the equilibrium
existence even more by increasing or decreasing T even further. Thus, the outside options
generate key interactions between entry/exit decisions of different agents that can destabilize
the otherwise very robust and stable entry-proof equilibrium of Attar et al. (2021).

However, depending on distributional assumptions, outside options also generate the
cascade of exits from a small change in fundamentals as in subsection 4.1. Specifically,
condition (13) generates Proposition 2, which is important because an exit of the lowest
(best) type agent always has an unambiguous, negative, and strategic effect to higher type
agents—exits of the lower type agents generate additional exits. Therefore, an additional
assumption that provides structure to the distribution of the outside option values is needed
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to guarantee that the equilibrium exists.

4.3 Discussion of Outside Options

Though sufficient, condition (13) is not necessary for exits to generate additional exits due
to negative spillovers. However, without some structure, the additional complexity of Roth-
schild and Stiglitz (1976)-type of non-existence problems arise. In addition, the pattern of
exits could become more complicated as there might be no cutoff type, θ, that partitions
agents into those who exit and remain. In particular, some intermediate valued agent may
remain in the market if the agent’s outside option utility is very low.

We introduce two different interpretations of outside options to justify assumption (13).
The first interpretation is a fixed entry cost. Suppose that each agent must pay a fixed entry
cost given by ξ > 0 if they choose to enter the market. Upon entry, the agent trades a
positive quantity, q, while paying the market tariff of T (q). The outside option is not paying
the entry cost of ξ, or a negative payment with zero trade quantity: ui(0,−ξ). Then, by
continuity and Assumption 2, there exists q

i
such that

ui(qi, 0) = ui(0,−ξ) = γi

for any i. Also, by the single-crossing property,

ui(qi, 0) ≥ ui(0,−ξ)⇒ uj(qi, 0) > uj(0,−ξ),

for any j > i. Therefore, q
i
is decreasing in the index i, and

ui(q, t) ≥ γi ⇒ uj(q, t) > γj, ∀i < j,

by the single-crossing property. Hence, (13) is a result of the single-crossing condition.
The second way to interpret outside options is to consider the opportunity cost of agents

entering a separate market that requires costly verification of agent’s type.16 In this market,
agents pay a fixed cost of κ to trade, and the market can verify each agents type. Therefore,
agent 1 may be happy to pay κ and get the lowest tariff c1 for the quantity q1, whereas agent
n would not be happy to pay κ and pay the highest tariff cn. Thus, whenever agent j > i

exits, agent i may also exit.
16The secondary market structure of agency mortgage-backed securities (MBS) is a good example. A

majority of MBS are traded in the to-be-announced (TBA) market, which pools heterogeneous MBS into
a few liquid TBA contracts but induces adverse selection. At the same time, traders can trade high-value
MBS outside the TBA market in a much less liquid specified-pool (SP) market by specifying the individual
CUSIP, but traders pay higher trading cost in the SP market (Huh and Kim, 2021).
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In the model, exit cascades require some specific parametric conditions. The most re-
strictive condition is that the outside option value for agent 1 should be very close to the
ex ante equilibrium utility level maxq≥0 u1(q, T (q)) ' γ1. However, once agent 1 exits due
to the entry of moldy lemons, agent 2’s maximum utility may experience a downward jump.
Therefore, γ2 can be well below the ex ante equilibrium utility level, maxq≥0 u2(q, T (q)) > γ2,
and agent 2 would still exit the market. Moreover, the downward jumps in utility are cu-
mulative as agent n will face all the decreases in utility from the exits of previous agents,
1, 2, . . . , n − 1. If we consider a model where the set of eligible participants is endogenous
(e.g., agent 1 is the marginal type who is close to being indifferent between entering and ex-
iting the market), the condition that agent 1’s outside option utility level be sufficiently close
to their ex ante equilibrium utility level arises naturally. Therefore, the required parametric
conditions may not be as restrictive as they appear.

Finally, one can think of a general equilibrium model in which the utility levels of outside
options are endogenously affected by entry/exit decisions of all agents.17 Such general equi-
librium interactions are out of the scope of this paper but will be an interesting direction for
future research. Nevertheless, our exit cascade results continue to hold even if the value of
outside options declines as the best types exit the market. More specifically, exit cascades
occur as long as the downward jump in market utility for remaining agents is larger than
the decline in value of the outside option.

4.4 Implications and Broader Discussion

The model of moldy lemons with outside options generates amplification effects—a small
mass of moldy lemons can generate a sudden market shutdown. This property resembles
real-world financial market movements and has an important policy implication: relatively
inexpensive policy interventions can prevent sudden and costly market collapses. Policies
need only to prevent the small mass of moldy lemons from contaminating the market. For
example, if the social planner lowers the market tariff with a total subsidy of (˜̄c1− c̄1)q1

∑
i∈I
mi,

then it is sufficient to prevent type 1 agent’s exit and the subsequent exit cascade. This
policy is desirable as long as the potential welfare losses,

∑
i∈I

(ui(qi, T (qi))− γi)18, on top of

17The current formulation of outside options under the two interpretations discussed above does not allow
the exit decisions of agents to impact the value of others’ outside options. For example, the fixed entry fee
is independent of other agents’ entry and exit decisions. Also, if the outside option “market” can identify
the true type of each agent, entry of moldy lemons or other agents into this outside option market will not
affect the utility of the lower type agents.

18Since suppliers are competitive, they break even in any equilibrium even under complete breakdown.
Therefore, the measure of social welfare is simply the sum of utilities across all types of agents (buyers).
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the spillovers to other markets is higher than the intervention cost.19 Therefore, our model
provides a simple yet important reason to support market functioning even with adverse
selection to prevent more widespread market breakdowns.

The cascade of exits is determined by both the degree of adverse selection and agents’
outside options. If entry is very costly—for example, because of high entry or regulatory
costs due to heavy usage of balance sheets—the outside option of agents not entering the
market could be more profitable. Then, there will be more exits in the market. A moderate
reduction of such costs (or reduction of the opportunity cost) could drastically change the
allocation by preventing the chain of exits and sudden collapse of the quantities traded in
the equilibrium.

Moreover, our results highlight the importance of monitoring the best (most reliable/least
costly) agent in the market. Even though monitoring the overall condition and the worst
(most risky/most costly) participants would be crucial in identifying the effect of moldy
lemons, exits of the most reliable agents are the trigger of the exit cascade. Hence, monitoring
the exit incentives of the best participant in each market is important for predicting and
preventing shut downs ex ante.

The model does not rely on detailed market structure or other types of complex interac-
tions of the agents. Therefore, the model could be applied to various contexts and markets
with adverse selection to provide insights on how adverse selection problems can cause partial
or full market shutdowns through a variety of changes within a given setting.

Our result that economies with more types (less coarse partitions) are more vulnerable
to exit cascades provides a general theoretical underpinning to the information production
literature (see for example, Gorton and Ordoñez (2019, 2020); Dang et al. (2020)). In
particular, one interpretation is that economies with more types grouped together have
more imprecise or opaque information about each individual type. This interpretation is apt
for models where an agent’s type is stochastic as in production economies or asset holdings
where agents maximize over the expected value of their types. Our model shows that if
more precise information about each agent’s type results in more recognizable agents in the
economy—a less coarse partition—and more asymmetric information between buyers and
sellers, then the market is more unstable. This is in line with Dang et al. (2020) who show
that information production can lead to a collapse in the market. Our result shows a similar
phenomenon with a more simple, static model.

19There are many complicated issues related to optimal interventions such as changing incentives under
the new rules (or mechanisms) as discussed in Philippon and Skreta (2012).
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5 Numerical Example

This section provides a numerical example to highlight the main analytical results. In par-
ticular, consider the canonical insurance market with binary loss model of Rothschild and
Stiglitz (1976) and Hendren (2014) following the idea of Dubey and Geanakoplos (2019).20

We first compare the results between the baseline model of Attar et al. (2021) with and
without outside options. Then, we consider the comparative statics on the partition of
types.

5.1 Model Setup and Equilibrium

Agents have initial endowment (e, 0) for (eg, eb), where eg and eb represent good state and
bad state endowment, respectively. They will consume (xg, xb) = (e, 0) under autarky, where
xg and xb represent good state and bad state consumption, respectively. Suppose that agents
have constant relative risk aversion (CRRA) and agent i’s utility function is

vi(xg, xb) = pi log(1 + xb) + (1− pi) log(1 + xg),

where pi is the probability of agent i faces a loss and receives bad state endowment. The
marginal rate of substitution for agent i is

τi(xg, xb) ≡

∂vi(xg, xb)

∂xb
∂vi(xg, xb)

∂xg

=
pi

1− pi
1 + xg
1 + xb

.

Following the assumption of competitive suppliers in the main model, the service cost for
suppliers is ci = pi, so they need pi amount of xg to insure 1 − pi amount of xb to agent i.
Under nonexclusive contracts, suppliers require the upper-tail conditional expected cost,

c̄i =
∑
j≥i

mjpj∑
j≥imj

,

where mi is the relative mass of agent i.
Denote the additional utility level of taking the outside option on top of utility under

no trade, vi(e, 0), as γ for each i. Agents will compare the level of utility they can get from
their optimal consumption bundle in the market to the level of utility they can get from the

20Note that the baseline model of Attar et al. (2021) and our extension with outside options in this paper
are much more general and can be applied to many other contexts.
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outside option and decide whether to enter or exit the market. Utilizing the results on the
general model, the Condition ML(i) for this model is

vi(x
i
g, x

i
b) ≤ γi = vi(e, 0) + γ,

where vi(e, 0) + γ is decreasing in i. If the above inequality holds, then any agent j ≤ i exits
the market and we set xjb = 0.

5.2 Effect of Outside Options and Moldy Lemons

We verify the main result of this paper with the numerical model. Figure 3 shows equilibrium
of the baseline model in the top panel and equilibrium of the model with outside options in
the bottom panel. For each panel, the horizontal axis represents consumption in the good
state, xg, and the vertical axis represents consumption in the bad state, xb. Each colored
curve represents the consumption possibility frontier for a given mass of moldy lemons in the
market. Different shapes of dots represent each agent’s optimal consumption bundle given
mass of moldy lemons and other agents’ consumption in the equilibrium.

First, the results show that xb decreases monotonically with the increase in the mass
of moldy lemons. As more moldy lemons enter the market, the upper-tail conditional ex-
pected cost ˜̄ci increases, depressing the consumption possibility frontier for every agent in
the market. With the higher cost, agents purchase less (insurance) contracts.21

Second, the results show a market shutdown in the model with outside options, which
does not exist in the model without outside options. Even though total quantities decrease
in both models, the model without outside options shows a smooth contraction of quantities
traded as the mass of moldy lemons rises. Thus, even when the moldy lemons mass is 0.4,
all agents still enter the market and trade in positive amounts. In contrast, the model with
outside option shows the exit of agents and total market shutdown at the moldy lemons mass
of 0.3. Thus, the numerical exercise shows how the existence of outside options can generate
complete market shutdowns even for a small mass of moldy lemons.22

5.3 Coarse Partition of Types and Moldy Lemons

Using the model with outside options, we analyze comparative statics of Proposition 3 on
the division of types depicted in Figure 4. In particular, we group adjacent types of agents

21This decrease in quantities may not always be the case in the general model, because the income effects
might dominate the substitution effects. The functional form of this exercise precludes the case of insurance
being a Giffen good.

22The definition of complete market shutdown here is the exit of all agents except for moldy lemons.
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Figure 3: Consumption bundles of models without and with outside options
Note: Each curve represents consumption possibility frontier and consumption bundles of each agent repre-
sented by different shape of dot for a different mass of moldy lemons.

into a single type whose service cost is the weighted average of individual type’s cost, and a
mass equal to the sum of each type’s mass. In particular, we combine type 1 and 2 together
to create a new type 1 agent with probability and mass as

p̂1 =
m1p1 +m2p2
m1 +m2

m̂1 = m1 +m2.
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Figure 4: Consumption bundles of models with different partition of types
Note: Each curve represents consumption possibility frontier and consumption bundles of each agent repre-
sented by different shape of dot for a different mass of moldy lemons.

Similarly, we also combine type 3 and 4 in the baseline case into a new type 2 agent as

p̂2 =
m3p3 +m4p4
m3 +m4

m̂2 = m3 +m4,

while simply renaming the previous agent 5 as agent 3. Therefore, the market-wide uncer-
tainty and service cost remain the same as before.

31



The top panel of Figure 4 is the baseline case as shown in the bottom panel of Figure 3,
while the bottom panel of Figure 4 is the case with a more coarse partition. The numerical
results show that the economy with a coarser partition of types is less vulnerable to moldy
lemons–there are fewer exits across varying masses of moldy lemons. Also, full market
shutdown does not happen even when the moldy lemons mass is 0.3, which generated a full
market collapse under the baseline case.

6 Conclusion

We show that the entry of a small mass of the worst type of agents (moldy lemons) can
induce a cascade of exits and market shutdown under non-exclusive competition in the
presence of outside options. Without outside options, entry of a small mass of lemons does
not generate a cascade of exits and complete market shutdown because agents’ marginal rates
of substitution are (weakly) increasing. With outside options, the entry of moldy lemons
causes trade quantities to discontinuously fall because the exit of an agent decreases total
utility of the remaining agents, which could trigger a cascade of exits. Our results suggest
a parsimonious yet realistic way of generating sudden market shutdowns without imposing
additional structure, relying on belief- or sentiment-driven runs, or modeling institutional
details. Thus, our model is widely applicable to many different markets and contexts.
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Appendix

A Details of Numerical Simulations

For computational tractability, we would like to represent agents’ optimization problem
as isomorphic optimization problem across all agents by adjusting the endowments ei for
each agent i. This can be done by exploiting the single-crossing property and any agent
i > j would consume as much as agent j does in equilibrium. For a given ei, the optimal
consumption bundle is

x∗g = (1− pi)ei −
pi − c̄i
1− c̄i

x∗b =
pi − c̄i
c̄i

+
(1− c̄i)pi

c̄i
ei,

for an interior solution. If it is a corner solution, then (x∗g, x
∗
b) =

(
0,

1− c̄i
c̄i

ei
)

or (x∗g, x
∗
b) =

(ei, 0).
From the results in the general model, we know that agent 1 first decides on the optimal

quantity q∗1 for the given price c̄1 and then agent 2 decides on q∗2 for the price c̄2 on top of
purchasing q∗1, and so forth. Agent 1’s optimal consumption bundle is

x1g = (1− p1)e−
p1 − c̄1
1− c̄1

x1b =
p1 − c̄1
c̄1

+
(1− c̄1)p1

c̄1
e,

assuming that they have interior solutions without loss of generality. For agent 2, the same
optimality condition should hold, but the budget constraint is different from the previous
representation. This is because agent 2 can purchase the bundle in a cheaper price

c̄1
1− c̄1

instead of
c̄2

1− c̄2
up to x1b . Therefore, the updated budget constraint for agent 2 becomes

x2g = e− c̄1
1− c̄1

x1b −
c̄2

1− c̄2
(x2b − x1b)

= e+

(
c̄2

1− c̄2
− c̄1

1− c̄1

)
x1b −

c̄2
1− c̄2

x2b .

Therefore, we simply change the endowment from e to

e2 = e+

(
c̄2

1− c̄2
− c̄1

1− c̄1

)
x1b
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for the agent 2’s budget constraint. Thus, the optimal consumption bundle for agent 2 is

x2g = (1− p2)e2 −
p2 − c̄2
1− c̄2

x2b =
p2 − c̄2
c̄2

+
(1− c̄2)p2

c̄2
e2.

Agent 3’s problem is isomorphic to agent 2’s problem except that agent 3’s endowment is

e3 = e+

(
c̄2

1− c̄2
− c̄1

1− c̄1

)
x1b +

(
c̄3

1− c̄3
− c̄2

1− c̄2

)
x2b ,

and agent 3’s optimal consumption bundle becomes

x3g = (1− p3)e3 −
p3 − c̄3
1− c̄3

x3b =
p3 − c̄3
c̄3

+
(1− c̄3)p3

c̄3
e3.

For a general agent i, agent i’s updated endowment is

ei = e+
∑
j<i

(
c̄j+1

1− c̄j+1

− c̄j
1− c̄j

)
xjb,

and agent i’s optimal consumption bundle becomes

xig = (1− pi)ei −
pi − c̄i
1− c̄i

xib =
pi − c̄i
c̄i

+
(1− c̄i)pi

c̄i
ei.

Given these setup, the parameters of the model are as in the following Table 1.

Parameter Description Value
e good state endowment 10
(p1, p2, . . . , p5) probability of bad state (0.1, 0.15, . . . , 0.3)
(m1,m2, . . . ,m5) mass of each type (0.2, 0.2, . . . , 0.2)
γ outside option utility level 0.0758

Table 1: Parameter values for numerical simulations

For the numerical procedure, we check Condition ML(i) starting from i = 1 and
updating the endowment of ei+1 = e whenever the condition is satisfied. The algorithm
repeats this until it finds the agent that does not violate the test. Then, we proceed with

2



the rest of the agents’ consumption quantities using the iterative representation.
The algorithm that solves this numerical model is the following: For each i,

1. Calculate the endowment of agent i, ei, using the previous agents’ quantities.

2. Derive the optimal quantity for agent i, (xig, x
i
b) under ei and c̄i.

3. Compute the utility level vi(xig, xib) and compare that to vi(e, 0) + γ.

4. If it is above vi(e, 0) + γ, then the (xig, x
i
b) quantity is the optimal quantity. Otherwise,

set (xig, x
i
b) = (e, 0).

5. Move to the next agent i+ 1 and repeat from the first step.

3
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