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Abstract

This paper investigates how settlement speed affects financial stability in payment

networks, taking into account netting benefits, liquidity costs, and counterparty risks.

Our analysis reveals that faster settlements have ambiguous effects on systemic risk and

social welfare. The optimal settlement speed is determined by the network structure

and the trade-off between netting efficiency and liquidity costs on one hand, and the

probability of counterparty defaults on the other. We identify conditions where faster

settlement can increase systemic risk by amplifying crisis severity, despite reducing

crisis likelihood. Our insights have important policy implications, arguing against a

one-size-fits-all approach to settlement speed design.
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1. Introduction

The Securities and Exchange Commission (SEC) has recently implemented the conversion

of the U.S. securities market to a T+1 (one business day after the trade date) settlement

cycle, starting May 28, 2024. Following the SEC’s implementation of the new settlement

speed, there has not been a noticeable change in settlement fails other than trading halts,

which were due to technical malfunctions, in the New York Stock Exchange on June 4, 2024.

However, the question of “whether shorter settlement lags would increase the likelihood

and severity of systemic failures in payment systems or not” remains open.1 This question

is particularly timely, given the recent expansion of real-time payment systems such as

FedWire, FedNow, and Real-Time Payments (RTP), as well as the ongoing trend toward

faster deferred net settlement systems like the Clearing House Interbank Payments System

(CHIPS).

Despite extensive study, research on the systemic risk implications of altering the settle-

ment cycle remains scarce. In particular, payment systems can amplify initial shocks because

of their critical role in the financial system and their complex network structure, which can

propagate shocks rapidly through cascades of defaults.2 Therefore, understanding how the

interconnectedness of payment systems affects financial stability, and how this relationship

changes with settlement speed, is crucial for both policymakers and researchers.

We develop a network model to study the role of settlement in payment systems. Our

model incorporates four core features of payment systems: (i) networked payment flows,

(ii) netting of obligations, (iii) liquidity costs of funding payments, and (iv) idiosyncratic

liquidity shocks, including counterparty defaults.

We contribute to the financial networks literature by developing a model that incorporates

an understudied dimension, time. Moreover, we consider ex ante social welfare, accounting

1Throughout this paper, we use the term “payment system” to refer broadly to payment, clearing,
and settlement systems for a variety of financial transactions, including traditional payments, securities,
repurchase agreements, and derivatives.

2See, for a recent example, Kotidis and Schreft (forthcoming).
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for both the probability of shocks and the severity of any resulting contagion. By contrast,

most of the financial networks literature focuses on ex post welfare, because standard models

hold shock probabilities fixed and thus cannot accommodate changes in their likelihood.

Within our framework, we uncover a trade-off between lowering the likelihood of shocks and

increasing the severity of contagion conditional on a shock.

We consider a network of n agents, each holding a cash buffer and having senior debt

obligations. These agents are interconnected through a payment network, represented by a

matrix D, where each entry dij denotes the payment promised by agent j to agent i. The

key parameter of our model is τ , which represents the settlement time for all transactions

in the network. As τ decreases, the settlement speed increases, with τ = 0 implying instant

settlement.

The model has two crucial functions that vary with the settlement time τ : the liquid-

ity cost function L(τ) and the netting function α(τ). The liquidity cost function, which

is decreasing in τ , captures the costs associated with raising liquidity or posting collateral

to finance transactions. The netting function, which is also decreasing in τ , represents the

degree of liabilities that are not netted in the network, with (1 − α(τ)) indicating the pro-

portion of transactions netted. Institutional background and empirical evidence supporting

L′(τ) ≤ 0 and α′(τ) ≤ 0 are discussed in Section 1.1.

The model also incorporates counterparty risk through a random liquidity shock that can

hit some of the agents in the network before settlement occurs. The probability of this shock

arriving before settlement is given by F (τ), which is increasing in τ . When the shock arrives,

it reduces the available cash of affected agents, potentially leading to defaults, which can

propagate and cause further defaults through the network. Such defaults incur deadweight

losses to the economy that are proportional to the amount of payment shortfalls.

The model implies a clear trade-off: faster settlement (smaller τ) reduces the likelihood

of default contagion F (τ), but increases liquidity costs L(τ) and leaves a larger share of

liabilities unnetted—i.e., raises α(τ) (equivalently, reduces 1 − α(τ)). The ex-post welfare
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implications when a shock arrives is clear, as we show in Lemma 1, because a smaller τ re-

duces available cash and amplifies contagion via higher gross (less netted) exposures, thereby

lowering ex-post welfare. By contrast, the ex ante welfare effect is generally ambiguous:

while faster settlement may reduce the probability of stress events, it increases the severity

of contagion when they occur.

We obtain key theoretical results that shed light on the complex relationship between

settlement speed, network structure, and financial stability.

First, we establish the existence of a discontinuous contagion pattern. Specifically,

changes in settlement time can cause social welfare to increase or decrease sharply, depending

on the underlying network structure. This effect is especially pronounced when comparing

the complete and ring networks in Figure 2. In the complete network, if settlement is suf-

ficiently slow, only a single agent defaults when shocks occur. By contrast, under the same

conditions, the ring network exhibits multiple defaults, with the number of defaulting agents

rising as settlement speed increases. When settlement becomes fast enough, however, all

agents in both networks default. This abrupt shift in contagion dynamics—a phase transi-

tion illustrated in Figure 3—is consistent with findings in the financial networks literature

and has important implications for the ex ante evaluation of social welfare.

Second, we introduce the concept of default threshold points, defined as settlement times

at which the number of defaulting agents in the network changes discontinuously. These

threshold points are shown to be critical in determining the ex-ante welfare implications of

settlement speed. This insight extends beyond the comparison of complete and ring networks,

highlighting that the welfare effects of changes in settlement speed can differ dramatically

depending on whether the system operates at or above these threshold points. Furthermore,

we show that identifying default threshold points is solvable in polynomial time.

Third, we derive a novel result regarding the differential impact of settlement speed on

different network structures. We prove that faster settlement time can improve ex ante social

welfare of the ring network but worsen ex ante social welfare of the complete network. This
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heterogeneity in welfare effects underscores the importance of considering network structure

when designing settlement systems or implementing changes to settlement speeds.

Fourth, we show that the node depth centrality is a key measure of an agent’s systemic

importance. This measure captures how the initial impact of a default by one agent is

amplified through the network of defaulting agents, providing a useful tool for identifying

systemically important institutions in payment networks.

Finally, we derive conditions under which faster settlement creates a trade-off between

reducing the likelihood of systemic events and increasing their severity when they occur.

Altogether, our results provide new insights into the design of optimal settlement systems

and emphasize the importance of nuanced interactions between various factors and intercon-

nectedness for policymakers. Our findings have direct policy implications. We show that a

one-size-fits-all approach to settlement speed may be suboptimal, given the heterogeneity in

network structures. Moreover, our results provide a theoretical underpinning for targeted liq-

uidity support to central entities of payment systems during times of stress. Finally, we show

that faster settlements can decrease the likelihood of crisis events but increase their severity,

potentially leading to more frequent government interventions due to stronger incentives to

intervene.

1.1. Related Literature

Our paper contributes to the literature on financial networks and their implications

for systemic stability starting from Allen and Gale (2000). The foundational work in this

area is Eisenberg and Noe (2001), which has been extended in subsequent studies including

Rogers and Veraart (2013), Elliott, Golub, and Jackson (2014), Acemoglu, Ozdaglar, and

Tahbaz-Salehi (2015), Glasserman and Young (2015), Bernard, Capponi, and Stiglitz (2022),

Capponi, Corell, and Stiglitz (2022), Donaldson, Piacentino, and Yu (2022), Jackson and

Pernoud (2024), and Chang and Chuan (2024). Our main contribution is to incorporate the

time dimension by examining how shorter settlement horizons affect the tradeoff between
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counterparty risk and netting efficiency. Specifically, we evaluate ex ante expected social wel-

fare, taking into account both the probability of shocks and the extent of contagion should

they materialize. Chang and Chuan (2025) also examine the ex ante expected social welfare

in financial networks and find that an increase in collateral reuse decreases the likelihood of

crisis but increases the severity of crisis. Their result resembles our finding that an increase

in settlement speed decreases the likelihood of stress events but increases their severity.

However, in their model the uncertainty arises from the selection among multiple equilibria,

whereas in ours it stems from the probability of shock arrival—an exogenous source that is

more fundamental and directly tied to netting efficiency and liquidity costs.

A closely related to ours is Khapko and Zoican (2020), who study the effect of settlement

speed on the tradeoff between the impatience of traders and costly borrowing. We extend

their framework by explicitly incorporating networks and netting, thereby allowing us to

analyze the systemic risk implications of settlement speed.

This paper is also related to the literature on portfolio compression or netting of lia-

bilities (e.g. D’Errico and Roukny (2021), Veraart (2022), and Chang (2021)). Our time

dimension allows incorporating the tradeoff between a greater degree of netting α(τ) and

greater likelihood of shock arrival F (τ).

A large body of empirical and institutional research supports our key assumptions re-

garding the liquidity cost function L(τ) and the netting efficiency function α(τ). For exam-

ple, Rochet and Tirole (1996) emphasize the systemic risks in payment systems, including

widespread liquidity shortages and the propagation of failures. They show that net settle-

ment systems, such as the Clearing House Interbank Payment System (CHIPS), can allevi-

ate liquidity pressures through netting, whereas real-time gross settlement systems, such as

Fedwire, help prevent failure propagation but are more vulnerable to liquidity constraints.

VanHoose and Sellon Jr (1989) find an increase in daylight overdraft amounts commensurate

with the increase in payment amounts, Hancock and Wilcox (1996) find that the participants

in Fedwire react to the fees of daylight overdraft and holds more reserves in response to pol-
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icy changes, and McAndrews and Rajan (2000) find that the cost of overdraft fees and from

other sources of liquidity drive payments in Fedwire to be concentrated in late afternoon.

Kahn, McAndrews, and Roberds (2003) show that net settlement systems can prevent grid-

lock situations and economize collateral requirements, and avoid trading delays. The timing

decisions are further formally analyzed by Mills Jr and Nesmith (2008), who discuss the

effects of Real Time Gross Settlement (RTGS) as well as delivery-versus-payment (DVP)

and Delayed Net Settlement (DNS). Mills Jr and Nesmith (2008) emphasize that RTGS

and DVP systems settle payments and securities one at a time, so liquidity is needed to

complete each transaction, incentivizing participants to concentrate trades later in the day.

Afonso and Shin (2011) also emphasize that the Fedwire system requires large amounts of

liquidity for participating banks that can trigger precautionary demand in liquidity, which

could result in a systemic event.

Copeland and Garratt (2019) show that real-time gross settlement systems such as Fed-

wire require large amounts of cash to process relatively small net transactions, whereas

delayed settlement systems such as CHIPS can clear large gross obligations with a much

smaller net cash outlay. This difference arises from the fact that CHIPS provides a netting

service, which acts as a liquidity-saving mechanism. Furthermore, dozens of large banks

(along with some smaller ones) conduct substantial volumes of transactions through CHIPS,

whereas thousands of banks rely on Fedwire to settle smaller net amounts.

The study by Ding, Gonzalez, Ma, and Zeng (2025) examines the effect of instant pay-

ment systems by using administrative banking data and transaction-level payment data from

Brazil’s Pix, which is managed by the Central Bank of Brazil (BCB). Ding, Gonzalez, Ma,

and Zeng (2025) find that banks increased their liquid asset holdings and lent out more

subprime and defaulting loans after the adoption of instant payment systems. This occurred

because the convenience of instant payments to consumers comes at the cost of banks’ ability

to delay and net payments. Together, the findings of Copeland and Garratt (2019) and Ding,

Gonzalez, Ma, and Zeng (2025) provide strong empirical support for the central tradeoff in

7



our model, between liquidity costs and netting on one side, and counterparty risk on the

other.

Concerns about liquidity costs can even affect trading activity itself. Brunnermeier and

Pedersen (2009) uncover a self-reinforcing feedback loop exists between a trader’s funding liq-

uidity and an asset’s market liquidity. Andolfatto (2020) show that during periods of stress,

market participants tend to hoard liquidity, leading to lost trading opportunities. Acharya

and Merrouche (2013) provide empirical evidence that large settlement banks hoarded liquid-

ity during the 2007-2008 subprime crisis, because of increased uncertainty about counterparty

risk, leading to a freeze of the interbank lending market.

The role of netting efficiency has been studied in the context of clearinghouses (see Duffie

and Zhu (2011) for a theoretical analysis and Duffie, Scheicher, and Vuillemey (2015) for

an empirical study). Carapella and Mills (2011) formalize the role of central counterparties

(CCPs) in payment systems, showing that delaying transactions can help mitigate informa-

tional frictions. When CCPs provide netting and mutualize losses (e.g. Capponi, Wang,

and Zhang (2022)), netting reduces the cost of trading with informed counterparties, while

mutualization lowers potential losses, thereby enhancing incentives to trade. Hence, longer

settlement horizons can improve liquidity conditions and netting efficiency by alleviating

information asymmetries, ultimately supporting more mutually beneficial trading opportu-

nities and reinforcing the central mechanism of our model.

2. Model

We develop a general model that can be applied to both payment systems and securities

settlement systems. The following is an overview of the model, which is designed to capture

a slice of the continuous transactions in a parsimonious way. For every slice or snapshot of

time, there is a set of transactions that are scheduled to be settled sometime later. Some

amount of liquidity is needed for each slice of transactions to settle them. Over time, some
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transactions can be netted. However, over time, some counterparties may receive shocks and

default. Although there will be new transactions in the following periods, not being able

to settle the initial slice of transactions would lead to default. Thus, our model captures a

dynamic tradeoff for given transactions at a particular point in time.

2.1. Agents and Payment Network

There are n different agents, and the set of all agents is N = {1, 2, . . . , n} with n > 2.

Time is continuous and denoted as t ∈ [0, T̄ ], where T̄ is finite. Agents are risk neutral, do

not discount future up to T̄ ,3 and their utility is determined by how much net payments they

receive less liquidity cost (described below) at t = T̄ . Each agent i holds ei > 0 amount of

cash buffer (or operating net cash flow as in Eisenberg and Noe (2001)), and has senior debt

(such as deposits) to pay in the amount of si > 0. Each agent is connected to each other

through transaction agreements, which are exogenously given at t = 0.4 The amount of j’s

payment promised (liability) to i is denoted by dij. The payment network, which is defined

as the network of payments promised, is denoted by the matrix D ≡ [dij]i,j,∈N . Denote

the sum of payment obligations or the column sums of D as dj ≡
∑

i∈N dij. Define n × 1

vectors d ≡ (di)i∈N , e ≡ (ei)i∈N , and s ≡ (si)i∈N . The payment matrix can be represented

as D = Q ◦ dT , where ◦ is the Hadamard (Schur) product operator, and Q is the matrix of

weights with its (i, j)-element as

qij =
dij
dj
. (1)

3Although this is a simplifying assumption, we can consider T̄ as a relatively short horizon, which is
typically the case, so the effective discount rate is negligible.

4For example, banks do not have much control over how payments are made across their own depositors
and depositors of other banks. Another example is that large dealers tend to trade with counterparties
with whom they have long-term relationships, which are costly to adjust even when there are clear arbitrage
opportunities (Chang, Klee, and Yankov, 2025).
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2.2. Settlement Speed, Netting, and Liquidity Cost

Settlement speed. The time to settle all transactions in D is denoted by τ , which is

the key parameter of the model. By construction, τ ∈ [0, T̄ ]. As τ becomes smaller (larger),

the settlement speed increases (decreases), and τ = 0 implies instantaneous settlement.

Liquidity cost. Agents need to raise liquidity (or post collateral) to finance their trans-

actions. Such liquidity needs may decrease over time when settlement happens in later time.

For example, if a transaction is the purchase of a security, an agent (dealer) may find a

trader (outside of the network) who is willing to purchase the security from the agent over

time. However, if an agent (dealer) needs to settle the transaction right away, the agent

has to use its own funds to purchase or borrow the security. These effects are captured by

a reduced-form liquidity cost function denoted as L(τ), which is differentiable and strictly

decreasing in τ and L(τ) ≤ ei − si, ∀i ∈ N and ∀τ ∈ [0, T̄ ].5 Further, we assume that the

liquidity cost is senior to payments in the network. In sum, L(τ) represents the amount of

the opportunity cost of cash and the external netting of payments.

Netting. The matrix of transactions may have cycles or simply a path, which could be

compressed through netting of transaction liabilities. Define the full netting matrix D as the

matrix of transactions when all possible netting is conducted for the original network D, and

D ≤ D. The exact details of what type of netting is conducted are discussed in Appendix

B.

However, the actual netting may not reach the full netting matrix for many reasons,

such as limited information and staggered maturities or covenants (Donaldson, Piacentino,

and Yu, 2022; Jackson and Pernoud, 2024).6 The degree of netting can be greater when

5Khapko and Zoican (2020) provide a microfoundation for this liquidity cost. For example, broker-dealers
have to prefund their trades and face inventory risk (or opportunity cost of funds) or borrow securities that
they need to settle, and costs associated with both increase as settlement speed increases. In other cases,
agents in a payment system may have to rely on external short-term borrowing because mobilizing internal
liquidity takes time as settlement speed increases. Moreover, shorter payment delay means that agents
cannot use expected incoming funds to cover outgoing payments. In this paper, we are agnostic about the
source of the cost and take the decreasing liquidity cost as a reduced-form functional property.

6For example, D’Errico and Roukny (2021) find that even the most conservative compression scenario
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the settlement occurs later, as agents and the payment system can identify more netting

opportunities or simply because some of the transactions in D are actually formed later

(Kahn and Roberds, 1998). In other words, as the settlement speed decreases (τ increases),

the total required transactions to be settled decrease. We represent this degree of netting

by the netting function α(τ), which is differentiable and decreasing in τ , and α(τ) ∈ [0, 1]

for any τ ∈ [0, T̄ ]. We assume the actual required transactions are a convex combination of

the full netting matrix and the original transaction matrix as

D̂ ≡ (1− α(τ))D + α(τ)D, (2)

which we call as the partial netting matrix of D for given τ .7 We use corresponding notations

for the full netting and partial netting matrices: dij ≡ Dij, dj ≡
∑

i∈N dij, d ≡ (di)i∈N ,

d̂ij ≡ D̂ij, d̂j ≡
∑

i∈N d̂ij, and d̂ ≡
(
d̂i

)
i∈N

. Therefore, (1 − α(τ)) represents the degree of

internal netting of payments within the payment network.

2.3. Counterparty Risk and Default Spillovers

At any point in time, there is a small probability that some agents receive liquidity

shocks and default. The arrival time of liquidity shocks tl is a random variable with full

support [0, T̄ ]. Therefore, the probability of the arrival time being less than or equal to

τ (i.e. the probability of liquidity shocks arriving before the settlement of payments) is

F (τ) ≡ Pr (tl ≤ τ), which is differentiable and increasing in τ . In other words, the likelihood

of a liquidity shock disrupting the payment system is increasing in τ . Once liquidity shocks

arrive, each agent i experiences an immediate reduction in available cash in the amount of

ϵi ≥ 0. Denote the n× 1 vector of liquidity shocks as ϵ = (ϵi)i∈N . For exposition purposes,

we slightly abuse notation and denote ϵi = 0 when agent i does not receive a liquidity shock.

eliminates on average, more than 85% of the CDS positions in the European Union and all their counter-
parties.

7This general representation of netting encompasses a reduced-form representation of netting in Donald-
son, Piacentino, and Yu (2022).
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The vector of liquidity shocks ϵ is a random variable with the probability mass function G(ϵ)

for any ϵ ∈ Rn
+.

Due to the liquidity cost and liquidity shocks, some agents may default, as their obli-

gations may exceed their available liquidity. Therefore, agent j can pay the full promised

amount (after netting) d̂j when j has enough liquidity, or j would default when the full

promised amount exceeds the total net liquidity—the sum of payments from other agents

and cash buffer less of senior debt and liquidity cost paid.8 Denote the actual total payment

made by agent j as xj(τ,D, ϵ). The arguments τ , D and ϵ are often omitted in the follow-

ing for expositional simplicity. Agent j will pay the total amount of xj < d̂j, if agent j is

defaulting, or xj = d̂j, if agent j is solvent. Following the literature, we assume the pro rata

rule for distributing the remaining wealth of a defaulting agent to other agents; hence the

payment to agent i from agent j is qijxj.
9

Finally, we assume that a default incurs deadweight loss in terms of real cost as in

Rogers and Veraart (2013), Elliott, Golub, and Jackson (2014), and Glasserman and Young

(2015) among many others. The deadweight loss can be interpreted as legal costs or costs

of delays and inefficient allocation of resources during the bankruptcy procedure. In par-

ticular, following Bernard, Capponi, and Stiglitz (2022) and Capponi, Corell, and Stiglitz

(2022), the default of agent j inflicts a deadweight loss of min {βξj(τ,D, ϵ), Aj(τ,D, ϵ)} ,

where Aj(τ,D, ϵ) ≡ ej +
∑

k∈N qjkxk(τ,D, ϵ) is the value of agent j’s assets (liquidity buffer

plus payments received from other agents), ξj(τ,D, ϵ) ≡
[
d̂j + sj + ϵj + L(τ)− Aj(τ,D, ϵ)

]+
is agent j’s shortfall (total payment obligations + senior debt + liquidity shock + liquidity

cost − assets), and β > 0 is a scaling parameter. The arguments τ , D, and ϵ are often

omitted in the following. Note that the deadweight loss is bounded above by the total value

of the agent’s assets. The deadweight loss can cause either a decline in the defaulting agents’

8Here we are simply treating transactions in D̂ as being made in terms of cash. This is without loss of
generality, as for any transactions with securities, we can just re-normalize everything with the price p.

9This is a standard assumption in the literature, such as in Eisenberg and Noe (2001) and Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2015). Csóka and Herings (2021) provide an axiomatization of the proportional
rule in financial networks.
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remaining asset value (hence less payment to other agents) or purely a societal cost to the

un-modeled external agents. Denote the modeled agents’ share of the deadweight loss as γ.

Mathematically, the total payments made by agent j is

xj(τ,D, ϵ) ≡


d̂j, if Aj(τ,D, ϵ) ≥ d̂j + L(τ) + sj + ϵj

[Aj(τ,D, ϵ)− L(τ)− sj − ϵj − γmin {βξj(τ,D, ϵ), Aj(τ,D, ϵ)}]+ , otherwise,

(3)

where [·]+ ≡ max {·, 0} denotes the positive part. Thus, in a matrix-vector notation, the

payment that clear the payment network is

x =
[
min

{
d̂, Qx+ e− L(τ)1− s− ϵ− γmin {βξ,A}

}]+
, (4)

where x ≡ (xi(τ,D, ϵ))i∈N , ξ ≡ (ξi(τ,D, ϵ))i∈N , A ≡ (Ai(τ,D, ϵ))i∈N , and 1 is a vector of

ones for the appropriate dimension.

The (ex post) equilibrium concept we use is payment equilibrium, which satisfies (4)

for the given realization of liquidity shocks, liquidity costs, and netting. This equilibrium

concept is consistent with that of Eisenberg and Noe (2001) and many other papers in the

financial networks literature. The existence of multiple Pareto-ranked payment equilibrium

follows directly from Proposition 3 in Glasserman and Young (2015). There could be multiple

equilibria due to the fact that defaults can generate discontinuous drops in the asset values,

resulting in self-fulfilling defaults.10 However, all equilibria can be Pareto-ranked, so we focus

on the unique Pareto dominant payment equilibrium, i.e. the equilibrium with the lowest

total payment shortfalls and social welfare loss.

10See Chang and Chuan (2025) for a detailed discussion of this property of financial network models and
an analysis of equilibrium selection.
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Payments are
netted by 1− α(τ)
Liquidity costs

L(τ) are incurred

Nature decides
the arrival time
of the shock tl

tl ≤ τ

Payments are
netted by 1− α(τ)
Liquidity costs

L(τ) are incurred

tl > τ

Agents pay
equilibrium x

Surviving agents
consume

Some agents
may default
and incur

deadweight loss

Agents pay
equilibrium x

Surviving agents
consume

Figure 1: Timeline of the Model

2.4. Timeline

Figure 1 summarizes the timeline of the model. The nature decides the arrival time of the

shock tl. If the settlement time τ is less than tl, then there will be no defaults, payments are

netted by 1−α(τ), reducing the actual payment network as D̂ = (1−α(τ))D+α(τ)D, and

liquidity costs L(τ) are paid by agents. Agents will settle all the payments, and surviving

agents will consume their resulting wealth at t = T̄ . If the settlement time τ is greater

than or equal tl, then some agents may default (possibly from spillovers), depending on the

equilibrium payments x. Surviving agents consume but defaults also incur deadweight loss

of β multiplied by the amount of payment shortfalls.

2.5. Ex Ante Social Welfare Loss

Agents’ utility is determined by the net payment they receive less the liquidity cost.

Hence, the expected utility depends on the resulting equilibrium vector of payments that

varies by whether there is a liquidity shock or not. Note that the amounts of cash buffer,

senior debt, liquidity cost, and payment obligations remain the same with or without the

arrival of a liquidity shock. Without loss of generality, we assume that all obligations in D

can be made in full if no agent defaults.11 Then, by construction, all payments are made in

11This assumption helps us to focus on additional social welfare losses due to changes in the counterparty
default probabilities resulting from changes in settlement time and network structure. Our results can be
extended to the case in which some agents default on their obligations even if they are paid in full.
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full if no liquidity shock has arrived. With probability F (τ), a liquidity shock arrives before

the settlement, and some agents may default and incur deadweight losses. Therefore, the ex

ante expected utility of agent i for a given settlement time τ is

Ui(τ,D) =ei − si − L(τ) + (1− F (τ))

[∑
j∈N

qij d̂j − d̂i

]

+ F (τ)E

[∑
j∈N

qijxj − xi − ϵi − γmin {βξi(τ,D, ϵ), Ai(τ,D, ϵ)}

]
,

(5)

where the payments and values relevant to deadweight losses, (xi, ξi, Ai)i∈N , are determined

by the payment equilibrium when liquidity shocks arrive, and E [·] is the expectation over

different realizations of these liquidity shocks with probability G(ϵ).

Define the ex ante (expected) social welfare losses for a given τ and network D as

W (τ,D) ≡
∑
i∈N

(L(τ) + F (τ)E [min {βξj(τ,D, ϵ), Aj(τ,D, ϵ)}]) , (6)

where the first-term is the liquidity cost for settling trades at τ , and the second term is the

sum of the total deadweight losses for internal network agents (γ proportion) and for external

agents ((1−γ) proportion) multiplied by the probability of shock arrival F (τ). Note that the

payment shortfall to the liquidity shock ϵ is not included in the welfare loss, as the payments

to ϵ are simple transfers of wealth from the shocked agents to some unmodeled external

agents (senior creditors), i.e., it is zero sum.12 See Appendix C for a detailed discussion.

Equation (6) implies that the ex ante social welfare loss is determined by the liquid-

ity costs, and the expected deadweight losses from payment shortfalls, multiplied by the

probability of liquidity shock arrival. As τ increases, the likelihood of liquidity shock state

increases, the inter-agent liabilities decrease, and the liquidity cost decreases. Hence, the

resulting ex ante social welfare loss depends on the tradeoff and functional forms of α(τ) and

12This definition of social welfare loss generalizes the typical definition of ex post social surplus in the
literature. The ex post social surplus in our model is consistent with that of Acemoglu, Ozdaglar, and
Tahbaz-Salehi (2015) and Chang and Chuan (2024).
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L(τ) as well as the structure of the network D and resulting spillovers. Note that increase

in τ also decreases the liquidity cost when there is no liquidity shock.

3. Settlement Speed and Contagion

3.1. Discontinuous Contagion Patterns

We establish our first main result, which shows the discontinuous contagion patterns in

our model. When the settlement time τ changes, the social welfare may drastically increase

or decrease depending on the network structure. To illustrate the main mechanism clearly,

we impose a few simplifying assumptions in this subsection.

Following the literature, we focus on regular networks, which have homogeneous agents,

i.e., ej = ē and sj = s̄ for any j ∈ N , with the same in-degree and out-degree of payments, i.e.,∑
i∈N

dij =
∑
i∈N

dji = d̄ (Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015; Donaldson, Piacentino,

and Yu, 2022).13 Further, we assume the full netting matrix would eliminate all cycles in

the network.14 Specifically, for any connected regular network, the full netting matrix will

be D = 0, where 0 is the zero matrix. To simplify the feedback from deadweight losses, we

focus on the indirect deadweight loss case in which agents in the network do not suffer the

deadweight loss from payment shortfalls directly, i.e. γ = 0. Finally, we assume that only

one of the n agents is hit by the liquidity shock once it arrives, and the size of the liquidity

shock is fixed as a single value ϵ̄. Hence, the liquidity shock vector will be ϵi = ϵ̄ and ϵj = 0

for any j ̸= i. Also, we focus on the case with ϵ̄ > ē− s̄−L(T̄ ) to exclude trivial cases of no

default even after receiving a liquidity shock. This simplified setup enables us to compare

13In addition to the benefits of bringing simplicity and tractability due to symmetry, this setup allows
us to focus on the network connection itself rather than the size or asymmetry of payment flows. Given
that payment networks tend to have net zero flows in a steady state (because otherwise an agent would be
depleted of cash over time), this assumption is relatively in line with real-world payment networks.

14The notion of netting or portfolio compression here is “conservative compression” defined by D’Errico
and Roukny (2021). A “nonconservative compression” is possible if new edges of liabilities can be formed.
For a practical example, if transactions are centrally cleared, they can be netted even without cycles. See
Section B for more discussion.
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Figure 2: The ring network and the complete network

Note: The left graph depicts the ring network, in which each agent owes the full liability amount of d̄ to the

next agent. The right graph depicts the complete network, in which each agent owes
d̄

n− 1
to every other

agent.

our model directly with other key models in the literature, most notably that in Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2015).

First, we focus on two special cases of regular networks: ring and complete networks,

depicted in Figure 2. The ring network is a structure in which agent i is the only agent to

be paid by agent i − 1 for each i > 1 (for the entirety of d̄), and agent 1 is the only agent

to be paid by agent n. The complete network is a structure in which every agent owes the

same amount to each other agent, d̄/(n−1). Denote the ring network and complete network

as Dr and Dc, respectively.

The first proposition establishes the discontinuous patterns of contagion in payment

equilibrium for the complete network, which contrasts with the pattern of contagion in the

ring network. In particular, we consider two moving parts, L(τ) and α(τ), to prepare for

comparative statics with the settlement time τ . As τ increases, L(τ) decreases, and agents

have more liquidity. Therefore, agents can absorb larger shocks with their liquidity buffer.

In addition, as τ increases, more netting can be done (lower α(τ)), reducing the total inter-
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agent liability amount α(τ)d̄. This further reduces the inter-agent exposures, decreasing the

contagion throughout the network. Therefore, understanding the roles of the liquidity cost,

L(τ), and the netting function, α(τ), is crucial for the ultimate comparative statics with the

settlement time, τ .

The proposition shows the following: For the complete network, if either the size of the

liquidity shock is relatively small (compared to the liquidity buffer) or the size of the total

liabilities is relatively small (compared to the liquidity buffer), then only one agent defaults.

In comparison, the number of defaulting agents is greater than one in the ring network

under the same conditions. This result aligns with the results by Acemoglu, Ozdaglar, and

Tahbaz-Salehi (2015), but extends their results by considering different levels of the total

liabilities.

In contrast, when both the relative size of the liquidity shock and the relative size of the

total liabilities are large, all agents in the complete network default, and the same happens

in the ring network. The complete network has the highest number of defaults in a certain

parameter region, while it has the lowest number of defaults in the rest of the parameter

space. This abrupt change in contagion pattern, or phase transition, is in line with existing

literature (Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015; Chang and Chuan, 2024).

However, there is a subtle difference between the results in our model and those in the

literature. In typical models, such as those in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015)

and Chang and Chuan (2024), the complete network and the ring network have the same

level of social welfare when full contagion (i.e., all agents defaulting) occurs, because both

networks have the same number of defaults. In contrast, our model shows that the complete

network has a smaller total welfare loss than the ring network when the deadweight losses

don’t hit their upper bound, i.e., not all of the assets disappear due to deadweight losses.

This novel result further identifies a subtle difference in contagion pattern even when the

number of defaults is the same.

The main factor is our definition of deadweight loss, which is different from simply count-
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ing the number or the amount of defaults in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015)

and Chang and Chuan (2024). Even when all agents default, the total deadweight loss

depends on the distribution of payment shortfalls in our model. In the ring network each

defaulting agent is simply a conduit of the payments from previous agents to the next agent,

until the payment flow reaches the agent under shock. However, in the complete network,

each agent is using its payment to pay everyone else, who then reuses the payment to pay

everyone else, and so on. The excess propagation of payments reduces payment shortfalls

in the complete network, reducing the deadweight loss. This novel mechanism is relevant to

deadweight loss in the real world, as deadweight losses would be smaller in more complexly

interconnected payment systems.

Proposition 1. For a fixed settlement time τ , suppose that a liquidity shock ϵ̄ hits one agent,

and denote ϵ∗(τ) ≡ n(ē− s̄− L(τ)) and d∗(τ) ≡ (n− 1)(ē− s̄− L(τ)).

1. Suppose that D = Dc, the complete network.

(a) If either the relative size of the liquidity shock is small or the relative size of the

total liabilities is small, i.e. ϵ̄ ≤ ϵ∗(τ) or α(τ)d̄ ≤ d∗(τ), then only one agent

defaults and the total deadweight loss from default is

min
{
β (s̄+ ϵ̄− ē+ L(τ)) , ē+ α(τ)d̄

}
. (7)

(b) If both the relative size of the liquidity shock is large and the relative size of the

total liabilities is large, i.e. ϵ̄ > ϵ∗(τ) and α(τ)d̄ > d∗(τ), then all agents default

and the total deadweight loss from defaults is

min
{
β
[
α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ))

]
, ē+ (n− 1)(ē− s̄− L(τ))

}
+(n− 1)min

{
β
[
α(τ)d̄− (n− 1)(ē− s̄− L(τ))

]
, ē+ (n− 2)(ē− s̄− L(τ))

}
.

(8)

2. Suppose that D = Dr, the ring network.
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(a) If either the relative size of the liquidity shock or the relative size of the total

liabilities is small, i.e., ϵ̄ ≤ ϵ∗(τ) or α(τ)d̄ ≤ d∗(τ), then ψ other agents default

in addition to the shocked agent, and the total deadweight loss from defaults is

min
{
β(s̄+ ϵ̄− ē+ L(τ)), ē+ α(τ)d̄

}
+

ψ∑
m=1

min
{
β
(
α(τ)d̄−m(ē− s̄− L(τ))− ϕ

)
, ē+ (m− 1)(ē− s̄− L(τ)) + ϕ

}
,

(9)

where ϕ =
[
ē− s̄− L(τ) + α(τ)d̄− ϵ̄

]+
, and ψ = min

{
n− 1,

⌊
α(τ)d̄−ϕ
ē−s̄−L(τ)

⌋}
.15

(b) If both the relative size of the liquidity shock is large and the relative size of the

total liabilities is large, i.e. ϵ̄ > ϵ∗(τ) and α(τ)d̄ > d∗(τ), then all agents default,

and the total deadweight loss from default is

min
{
β
[
α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ))

]
, ē+ (n− 1)(ē− s̄− L(τ))

}
+

n−1∑
m=1

min
{
β
(
α(τ)d̄−m(ē− s̄− L(τ))

)
, ē+ (m− 1)(ē− s̄− L(τ))

}
,

(10)

which is greater than (8) for a small enough β.

All proofs are relegated to the appendix.

First, consider the case in which either the shock size relative to the amount of liquidity

is small or the relative size of the total liabilities is small. For the complete network, the

deadweight loss amount (7) comes from only the shocked agent, as all other agents can pay

each other in full by dispersing the liquidity shock among themselves equally. In contrast,

there can be other defaulting agents in the ring network, resulting in additional deadweight

losses as in the second term of (9). This is because the shock size can be still greater than

what a single agent can bear with its own cash buffer.

Suppose, without loss of generality, that agent 1 is the agent under liquidity shock. Agent

1 receives the payment in full as α(τ)d̄ but still defaults and only pays whatever is left over

15⌊·⌋ denotes the floor function, i.e. the greatest integer that is less than or equal to ·.
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after paying out the liquidity shock, i.e., the amount of ϕ. Agent 2 has its cash buffer net

of liquidity cost ē− s̄− L(τ) plus any payment from agent 1, ϕ; however that might not be

enough for its payment, so agent 2 pays agent 3 the amount of ē− s̄− L(τ) + ϕ. Similarly,

agent 3’s cash buffer net of liquidity cost plus the payment from agent 2, 2 (ē− s̄− L(τ))+ϕ,

still may not be enough to pay in full. Therefore, defaults will continue until agent ψ + 1,

who would have enough cash buffer ψ (ē− s̄− L(τ)) + ϕ to pay its obligation α(τ)d̄ in full.

Now suppose that both the shock size relative to the amount of liquidity and the relative

size of the total liabilities are large. All agents default for both the ring and complete

networks. However, the two networks experience different levels of changes in deadweight

losses. The difference in deadweight loss for the complete network when all agents default,

the difference between (8) and (7), primarily stems from the second term in (8), which is

(n− 1)min
{
β
[
α(τ)d̄− (n− 1)(ē− L(τ)− s̄)

]
, ē+ (n− 2)(ē− s̄− L(τ))

}
.

For the ring network, the change in deadweight loss between the two cases, represented by

the difference between (10) and (9), is relatively smaller as

n−1∑
m=ψ+1

min
{
β
(
α(τ)d̄−m(ē− s̄− L(τ))

)
, ē+ (m− 1)(ē− s̄− L(τ))

}
,

where ϕ = 0 in the case of 2.(b) in Proposition 1. This is mainly because there are already

additional ψ number of agents (other than the shocked agent) who are defaulting in the ring

network even in case 2.(a), so only the additional n−ψ−1 agents are defaulting, whereas the

additional number of defaulting agents is n− 1 in the complete network. Figure 3 illustrates

the results in Proposition 1.

Note that full contagion happens only if both the shock size relative to the amount of

liquidity and the relative size of the total liabilities are large. This property of full contagion

requiring both conditions to be simultaneously satisfied is very similar to that of Chang and

Chuan (2024), in which full contagion occurs only if the liquidity shock size is large and the
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(a) Number of defaults: Complete network (b) Number of defaults: Ring network

(c) Aggregate payment shortfall: Complete
network

(d) Aggregate payment shortfall: Ring net-
work

Figure 3: Number of defaults and aggregate payment shortfall: Complete vs Ring

Note: This figure illustrates the results in Proposition 1. The top panels have the number of defaults on the

y-axis and the settlement time τ on the x-axis. The top-left panel illustrates the phase transition property

of contagion in the complete network, as the number of defaults jumps at the threshold τ value. In contrast,

the top-right panel illustrates the gradual increase in the number of defaults for the ring network as τ

decreases. The bottom panels have the aggregate payment shortfall on the y-axis and the settlement time τ

on the x-axis. The bottom-left panel illustrates the phase transition property in the complete network. The

bottom-right panel illustrates smooth changes in the payment shortfall in the ring network as τ decreases.

collateral amount is small. Hence, our results align with the general findings in the financial

network literature—contagion is rare, as multiple conditions have to hold, and monitoring

systemic risk due to contagion requires collecting multi-dimensional information.

Finally, we discuss the two key functions, the netting function α(τ) and the liquidity cost

function L(τ), and how they interact with each other.

First, the liquidity cost function L(τ) plays a role in determining the threshold liquidity
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shock size ϵ∗(τ) = n(ē − s̄ − L(τ)). Hence, as τ increases, ϵ∗(τ) increases; i.e., the given

liquidity shock ϵ̄ is less likely to exceed the threshold, due to the decrease in L(τ). In other

words, agents will have a relatively larger cash buffer if they are paying less liquidity cost

when the settlement is slower. Similarly, L(τ) also plays a role in increasing the threshold

total liability amount d∗(τ) = (n−1)(ē− s̄−L(τ)) in a similar fashion. As the liquidity cost

decreases with slower settlement, the given total liability amount is less likely to exceed the

threshold.

The netting function α(τ) plays a role in determining only the total liability threshold.

As τ increases, the effective netting increases, i.e., α(τ) decreases, effectively increasing the

required total liability amount. This is because the inequality

d̄ ≤ d∗(τ)

α(τ)

becomes more likely to hold as α(τ) decreases for a given d̄.

Both L(τ) and α(τ) move in the same direction, making cases 1.(a) and 2.(a) more likely

as τ increases. We can rearrange the threshold conditions and combine the two as presented

in the following corollary.

Corollary 1. All agents default in the complete network if and only if τ > τ ∗, where τ ∗ is

such that

L(τ ∗) ≡ ē− s̄−min

{
ϵ̄

n
, α(τ ∗)

d̄

n− 1

}
(11)

holds.

We refer to τ ∗ as the threshold point (for the complete network) from now on. Corollary

1 implies that the threshold point is decreasing in the cash buffer net of senior debt ē− s̄, as

the required liquidity cost amount for the threshold condition increases with it. For example,

if there is no net cash buffer at all (ē − s̄ = 0), then full contagion occurs in the complete
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network even if there is no liquidity cost (L(τ) = 0), regardless of other values. Moreover, the

threshold point, τ ∗, decreases, as the shock size divided by the number of agents decreases.

In other words, if the shock can be absorbed by the aggregate net cash buffer of all agents,

n(ē − s̄) > ϵ̄, then some degree of liquidity cost L(τ) can still be absorbed by the system,

thus there is no full contagion with a lower settlement time.

Finally, Corollary 1 implies that there is an interaction between L(τ) and α(τ) when de-

termining the threshold condition. As the degree of netting increases (i.e., α(τ) decreases),

the network can withstand a larger value of liquidity cost L(τ), allowing for a faster set-

tlement speed (lower τ ∗) without full contagion. However, if the degree of netting is small

(α(τ) is relatively large) and the total liabilities for each agent are large (d̄ is large), then

the interaction between α(τ) and L(τ) becomes irrelevant. This is because the size of the

liquidity shock becomes the minimum of the last term in the right-hand side of (11). In

other words, in this case, the relative size of the total liabilities is already large, so the size of

the liquidity shock is the marginal factor that determines the value of the liquidity cost that

the network can bear while absorbing the liquidity shocks and preventing full contagion.

3.2. Heterogeneous Ex Ante Social Welfare Implications

Proposition 1 shows the phase transition in ex post contagion patterns. Now we utilize

the phase transition property to evaluate ex ante social welfare implications of different

networks and settlement times. The next proposition builds on Proposition 1 and shows that

decreasing the settlement time τ has different effects across different network structures. In

particular, we show that faster settlement time can improve ex ante social welfare of the ring

network but worsen ex ante social welfare of the complete network.

For expositional simplicity, we focus on the case in which the upper bound on each agent’s

deadweight loss is not binding, i.e., β and ξi are small enough so that the defaulting agent’s

assets Ai are not completely wiped out due to bankruptcy losses. While this assumption is

mainly for tractability, it is also consistent with reality. Legal costs of bankruptcy or costs
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of delays in allocating remaining assets of a defaulting agent are unlikely to be as large as

the total assets themselves. Nevertheless, our model can be easily extended to incorporate

cases with βξi > Ai in a numerical model.

A marginal change in the settlement time τ affects the ex ante welfare loss in three

different ways. It affects:

(a) The aggregate liquidity cost nL(τ);

(b) The likelihood of the liquidity shock and resulting deadweight losses due to counter-

party defaults by changing the shock arrival probability F (τ); and

(c) The total deadweight losses
∑

j∈N βξj(τ,D, ϵ).

Therefore, for a given τ and network D, the marginal change in the ex ante welfare loss is:

∂W (τ,D)

∂τ
= nL′(τ) + F (τ)

∑
j∈N

β
∂ξj(τ,D, ϵ)

∂τ
+ F ′(τ)

∑
j∈N

βξj(τ,D, ϵ). (12)

The first term of (12) represents the decrease in liquidity cost for all n agents. The second

term represents the marginal change of the deadweight losses multiplied by the default

probability. The third term represents an increase in the default probability multiplied by

the deadweight losses due to default contagion. We later show that the second term is always

negative in Lemma 1.

The following proposition demonstrates the heterogeneous changes in ex ante welfare loss

when τ changes.

Proposition 2. For a fixed τ ∈ (0, T̄ ), and the complete network Dc and the ring network

Dr, the following statements hold:

1. Suppose that L(τ) < L∗(τ). The comparison between the marginal change in the ex ante

welfare loss for the complete network and that for the ring network is ambiguous, i.e.,

both
∂W (τ,Dc)

∂τ
>
∂W (τ,Dr)

∂τ
and

∂W (τ,Dc)

∂τ
≤ ∂W (τ,Dr)

∂τ
are possible depending on

the parameter values and functional forms.
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2. Suppose that L(τ) ≥ L∗(τ). Then, the marginal change in the ex ante welfare loss

for the complete network is less than that for the ring network, i.e.,
∂W (τ,Dc)

∂τ
<

∂W (τ,Dr)

∂τ
. Moreover, an increase in τ can make the complete network better off,

while making the ring network worse off, i.e.,

∂W (τ,Dc)

∂τ
< 0 <

∂W (τ,Dr)

∂τ
. (13)

Proposition 2 implies that there can be cases, where faster settlement speed can make the

ring network better off while making the complete network worse off. In particular, such con-

crete ex ante social welfare comparison is possible once the liquidity cost exceeds the phase

transition threshold L∗(τ). If the liquidity cost is below the threshold, or equivalently τ is

large enough, then the comparison depends on all parameter values and functional forms, as

we have many moving parts. However, this intricacy surprisingly disappears once the liquid-

ity cost reaches its threshold, or equivalently τ is small enough. Thus, our result highlights

the critical role of sudden jumps in the number of defaulting agents when considering the ex

ante social welfare of a given network and settlement speed τ .

Figure 4 shows that a decrease in settlement time can either increase or decrease the

ex ante social welfare depending on the current settlement time τ . Although the global

maximum of the ex ante social welfare is attained at the maximum τ value in both cases

under this specific parameter space of simulations, it’s important to note that the global

maximum depends on the functional form and parameter values of α(τ), L(τ), F (τ), and

others, as stated in the first part of Proposition 2.

3.3. General Networks and Ex Ante Social Welfare

We continue to explore the effect of jumps in the number of defaulting agents on marginal

ex ante social welfare in a general setup. In this subsection, we allow for the case with γ > 0,

i.e., deadweight losses from defaults further reduce the payments from defaulting agents. For
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(a) Ex ante Social Welfare: Complete net-
work

(b) Ex ante Social Welfare: Ring network

Figure 4: Ex ante Social Welfare: Complete vs Ring

Note: This figure illustrates the results in Proposition 2. Both panels have the ex ante social welfare on the

y-axis and the settlement time τ on the x-axis. The left panel shows the changes in ex ante social welfare for

the complete network. The ex ante social welfare shows a kink, a discrete jump in the slope, at the threshold

value. The right panel shows the changes in the ex ante social welfare for the ring network that changes

smoothly. Thus, if τ is just below the threshold value, the marginal change in the ex ante social welfare is

positive for the complete network, while it is negative for the ring network.

simplicity, we focus on the case of γ = 1; however, our results can be easily extended to any

0 < γ < 1. Similarly, we focus on cases in which ϵj < ej for any j ∈ N and any realization

of ϵ, for expositional simplicity.16

3.3.1. Aggregate Deadweight Loss and Welfare Decomposition

Consider any general regular network D. Denote the set of defaulting agents and solvent

agents as D(τ, ϵ) and S(τ, ϵ), respectively, for a given settlement time τ and liquidity shock

vector ϵ. First, we show that the deadweight loss from payment shortfall of any j ∈ N ,

βξj(τ,D, ϵ) = β

[
α(τ)d̄+ s̄+ ϵ̄j − ē+ L(τ)−

∑
k∈N

qjkxk(τ,D, ϵ)

]+

,

is decreasing in τ . In other words, for a fixed probability of shock arrival, F (τ), the ex ante

welfare loss always decreases as τ increases.

16This assumption is similar to the assumption on liquidity shock in Acemoglu, Ozdaglar, and Tahbaz-
Salehi (2015).

27



Lemma 1. The aggregate deadweight loss conditional on the arrival of a liquidity shock

decreases as τ increases. Furthermore, the number of defaulting agents weakly decreases as

τ increases, i.e., D(τ ′, ϵ) ⊆ D(τ, ϵ) for any τ < τ ′, D, and ϵ.

The intuition is that the payment shortfall for each agent decreases as its liability and

liquidity cost decrease through decreases in α(τ) and L(τ). Even though the payments from

others also decrease in
∑

k∈N qjkxk if xk = α(τ)d̄, the sum of qjk over j ∈ N cannot exceed

1, which is the coefficient for the liability of agent j itself. In other words, the decrease in

liabilities to be paid by j exceeds the decrease in payments from solvent counterparties.

Lemma 1 clarifies the tradeoff associated with changes in τ . As τ increases, the aggregate

deadweight loss always decreases, either through a smaller amount of payment shortfalls or a

reduced number of defaulting agents. However, an increase in the likelihood of shock arrival

counteracts that effect. The following result summarizes the decomposition of net welfare

effect of an increase in τ :

Proposition 3. For a given settlement time τ , network structure D, and the liquidity shock

state ϵ, suppose that D(τ, ϵ) = D(τ + δ, ϵ) for a small enough δ > 0. Then, the effect of an

increase in the settlement lag on the ex ante welfare loss depends on netting benefits, liquidity

costs, and counterparty risks, as shown in the below decomposition:

nL′(τ)︸ ︷︷ ︸
decrease in
liquidity cost

+ F (τ)︸︷︷︸
probability of
shock arrival

∑
j∈D(τ,ϵ)

β
∂ξj(τ,D, ϵ)

∂τ︸ ︷︷ ︸
decrease in aggregate

deadweight loss︸ ︷︷ ︸
Benefit

+ F ′(τ)︸ ︷︷ ︸
increased likelihood
of shock arrival

∑
j∈D(τ,ϵ)

βξj(τ,D, ϵ)︸ ︷︷ ︸
aggregate

deadweight loss︸ ︷︷ ︸
Cost

. (14)

The proposition provides us several insights. For example, if a default does not incur

deadweight losses, i.e., β = 0, the aggregate welfare loss is decreasing in τ due to decreases

in liquidity costs nL′(τ). Similarly, if the payment shortfall, ξj(τ,D, ϵ), is very small, the ex

ante welfare loss given ϵ decreases as τ increases. The welfare implication becomes ambiguous

only if the conditional payment shortfall is large, and the increase in the likelihood of shock
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arrival F ′(τ) is significant.

3.3.2. Default Threshold Points, Centrality, and Ex Ante Welfare Loss

Now, we can finally analyze the changes in the ex ante welfare loss by utilizing the

monotone effect of the settlement time τ from Lemma 1 and the decomposition of net

welfare effect from Proposition 3. In particular, we show that default threshold points, the

settlement times at which one or more agents are on the verge of default, play an important

role in comparing ex ante welfare losses across two different settlement times. Moreover, we

show that the node depth centrality, which represents the systemic importance of an agent,

is key for measuring the effect of payment shortfalls. The formal definitions and statements

are below.

First, we compute the total amount of deadweight loss for a given shock vector ϵ.

Node depth centrality. Recall that the difference between the total liability and the

actual payment of a defaulting agent j is

α(τ)d̄− xj(τ,D, ϵ) = (1 + β)ξj(τ,D, ϵ), (15)

i.e., the fundamental payment shortfall

ξj(τ,D, ϵ) ≡

[
α(τ)d̄+ s̄+ ϵj + L(τ)− ē−

∑
k∈N

qjkxk(τ,D, ϵ)

]+

,

multiplied by (1+β) due to the deadweight loss. We can use (15) to represent the aggregate

deadweight losses, similar to Capponi, Corell, and Stiglitz (2022), as:

β
∑

j∈D(τ,ϵ)

ξj(τ,D, ϵ)

1 + (1 + β)
∑

k∈D(τ,ϵ)

qkj + (1 + β)2
∑

k∈D(τ,ϵ)

∑
l∈D(τ,ϵ)

qlkqkj

+(1 + β)3
∑

k∈D(τ,ϵ)

∑
l∈D(τ,ϵ)

∑
m∈D(τ,ϵ)

qmlqlkqkj + · · ·

 . (16)
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The expression in (16) captures the following:

1. The initial deadweight loss for a defaulting agent j: βξj(τ,D, ϵ).

2. The direct first-order effect of payment shortfalls and the deadweight loss on agent j’s

counterparties: βξj(τ,D, ϵ)(1 + β)
∑

k∈D(τ,ϵ) qkj.

3. The second-order effect of these counterparties affecting their own counterparties:

βξj(τ,D, ϵ)(1 + β)2
∑

k∈D(τ,ϵ)

∑
l∈D(τ,ϵ) qlkqkj.

4. All the higher-order effects from iterating this process infinitely.

Denote QD(τ,ϵ) as a submatrix of Q for the subset of D(τ, ϵ). If the spectral radius of

(1 + β)QD(τ,ϵ) is less than one, then we can represent the sum as a Neumann series

β
∑

j∈D(τ,ϵ)

ξj(τ,D, ϵ)

1 + (1 + β)
∑

k∈D(τ,ϵ)

qkj + (1 + β)2
∑

k∈D(τ,ϵ)

∑
l∈D(τ,ϵ)

qlkqkj + · · ·


︸ ︷︷ ︸

Cj(D(τ,ϵ))

, (17)

where Cj (D(τ, ϵ)) is the node depth centrality among D(τ, ϵ) as defined by Glasserman and

Young (2015). Note that Cj(D(τ, ϵ)) only depends on the set of defaulting agents.17

We assume that the spectral radius assumption, the spectral radius of (1+β)QD(τ,ϵ) is less

than one, holds for the following analysis, as it allows us to derive crisp analytical results,

which bring useful insights. In particular, the node depth centrality is useful to derive a

closed-form solution for the defaulting amount in matrix notation. However, the insights

can be generalized to cases in which the spectral radius assumption does not hold.

As it can be seen from Lemma A.2 in the Appendix, the aggregate deadweight loss can be

represented in terms of the node depth centrality. The (node depth) centrality Cj (D(τ, ϵ))

17The technical condition for the spectral radius being less than one also has a clear economic interpre-
tation. For the node depth centrality to be well defined, if there are cycles in the subnetwork D(τ, ϵ), the
entries of the relative liability matrix QD(τ,ϵ) have to be sufficiently small. In other words, if a payment
within the subnetwork can be amplified through cycles, then it must be sufficiently small, because otherwise
there would be too much amplification of welfare losses within the set of defaulting agents and the infinite
sum (16) does not converge, resulting in a complete depletion of one or more agents’ assets. For example,
the ring network has a spectral radius greater than one, and its node depth centrality could not be computed
using matrix inversion.

30



can be interpreted as a “default contagion multiplier.” This multiplier captures the am-

plification effect of defaults on the aggregate deadweight losses throughout the network, as

Cj (D(τ, ϵ)) shows how the initial impact of a default by agent j is magnified across the

network of defaulting agents. The magnitude of Cj (D(τ, ϵ)) represents the importance of j,

in terms of amplification of deadweight losses, in the given network structure D for a given

settlement time τ . Therefore, the multiplier Cj (D(τ, ϵ)) quantifies the systemic importance

of agent j in terms of its payment shortfall-induced deadweight losses.

Finally, we consider comparative statics of decreasing τ to τ ′ on the ex ante welfare loss.

There can be two different cases following this effect: with or without the changes in the set

of defaulting agents.

Case with no additional defaults. First, suppose that D(τ ′, ϵ) = D(τ, ϵ), i.e., the set

of defaulting agents under the same liquidity shock state ϵ would be the same as that under

τ . The centrality of an agent Cj (D(τ, ϵ)) would remain the same, but the payment shortfall

amount will change due to the following factors:

(a) The initial decline in xj(τ,D, ϵ) due to L(τ) increasing to L(τ ′), resulting from higher

liquidity cost to facilitate quicker trades;

(b) The decrease in inter-agent payments xj(τ,D, ϵ) to xj(τ
′, D, ϵ) that amplifies the initial

increase in cost of L(τ ′)− L(τ); and

(c) The increase from α(τ)d̄ to α(τ ′)d̄ due to a lesser degree of netting of liabilities.

Case with additional defaults. Second, suppose that D(τ, ϵ) ⊂ D(τ ′, ϵ), i.e., there are

additional agents who default under this new regime under the same ϵ. Then, there will be

an additional jump in deadweight losses due to reaching this default threshold for previously

solvent agents. This impacts the deadweight losses in two ways:

1. There will be more agents included in the summation of
∑

j∈D(τ ′,ϵ) compared to∑
j∈D(τ,ϵ).
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2. The multiplier for the payment shortfalls, Cj (D(τ, ϵ)), will jump up to Cj (D(τ ′, ϵ)) as

the summation of the weighting matrix
∑

k∈D(τ ′,ϵ)Qkj increases for each j ∈ D(τ ′, ϵ).

Consequently, even if the payment shortfall for each agent α(τ)d̄−xj(τ,D, ϵ) is continuously

decreasing in τ , there will be discontinuous effects from the change in the set of defaulting

agents D(τ ′, ϵ). This effect increases as the number of additional defaults increases.

After considering both changes, we also discount the deadweight losses by the lower

likelihood of liquidity shocks, as F (τ ′) < F (τ). Hence, the tension between the two factors—

an increase in deadweight losses versus a decrease in the likelihood of liquidity shocks—will

determine whether faster payments (lower τ ′) increase or decrease social welfare.

Default threshold points. Combining the three factors, we argue that focusing on

the default threshold points—the values of τ where a marginal decrease in τ would increase

the number of defaulting agents—is critical in evaluating comparative statics with ex ante

welfare losses. Formally, we define the set of default threshold points for a given network D

and liquidity shock ϵ as T (D, ϵ), where ∀τ̃ ∈ T (D, ϵ), D(τ̃ , ϵ) ⊂ D(τ̃ − δ, ϵ) and D(τ̃ − δ, ϵ) ⊈

D(τ̃ , ϵ), while D(τ̃ + δ, ϵ) = D(τ̃ , ϵ), for any small δ > 0. Define the union of the set of

default threshold points for every possible realization of ϵ (i.e., ∀ϵ with positive probability)

as the default threshold points T (D). We can define the set of settlement times such that

the number of defaulting agents remains constant over the set up to the default threshold

points. In other words, for any τ̃ ∈ T (D), we define the set of constant defaults as T (τ̃ , D)

such that D(τ, ϵ) = D(τ̃ , ϵ) if and only if τ ∈ T (τ̃ , D) for every possible ϵ.

Theorem 1. If the settlement time τ is a default threshold point, i.e., τ ∈ T (D) for a

given network D, the left-hand derivative of the ex ante welfare loss is strictly less than the

right-hand derivative of the ex ante welfare loss at τ , i.e.,
∂W (τ,D)

∂τ−
<
∂W (τ,D)

∂τ+
, due to

additional defaults. Furthermore, there can be cases in which an increase in τ improves

welfare exactly at a default threshold point.

Theorem 1 implies that evaluating the changes in ex ante social welfare should account

for both the continuous changes in the likelihood of shocks and the resulting aggregate

32



Faster settlement speed
(lower τ)

Increase in liquidity
cost L(τ)

Increase in required
payment α(τ)d̄

due to less netting

(C) Decrease in likelihood
of shock arrival F (τ)

(A) Increase in payment
shortfalls and

deadweight loss
∑

j∈D βξj

(B) Increase in defaulting set D̃
and deadweight loss

∑
j∈D̃ βξ̃j

Figure 5: Impact of a faster settlement speed on financial stability

Note: This figure visualizes the effect of a faster settlement speed (lower τ) on financial stability through

three different channels—the cost channels, (A) and (B), and the benefit channel (C). Faster settlement

increases liquidity cost and required payment due to less netting, while decreasing the likelihood of shock

arrival, i.e., the benefit channel (C). However, the first two effects lead to an increase in payment shortfalls

and deadweight loss, i.e., the cost channel (A). Moreover, if τ is a default threshold point, the first two effects

can lead to an increase in the number of defaults, leading to a further increase in deadweight loss, i.e., the

cost channel (B). Therefore, whether τ is a default threshold point or not is important, as it determines the

importance of the cost channel (B), highlighted by Theorem 1.

deadweight loss and the discrete jump in the aggregate deadweight loss due to changes in

the number of defaulting agents at the default threshold points in T (D). An extreme case

of the effect of a default threshold point is the phase transition of the complete network

shown in Proposition 2. There is only one threshold point for the complete network due to

its perfect symmetry. Figure 5 visualizes the tradeoff and the role of default threshold points

highlighted by Theorem 1.

Note that if τ is not a default threshold point, the effect of faster settlement speed is

ambiguous. A marginal change in ex ante welfare loss W (τ,D) with respect to τ can be pos-

itive or negative, depending on the functional forms (α(τ), L(τ), and F (τ)), the parameters

(β, ē, s̄, G(ϵ)), and the centrality of each agent under each realization of ϵ (Cj(D(τ, ϵ))). In

other words, the tradeoff depends on many moving parts—netting benefits, liquidity costs,

counterparty risks, and network structure—as characterized by Proposition 3.

Figure 4 illustrates a great example of Theorem 1 and the tradeoff of faster settlement

speed. First, it shows that the settlement time does not have a monotone effect on the ex ante
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social welfare. When settlement time τ is close to zero, an increase in τ leads to a decrease

in welfare. The ex ante social welfare starts to increase around τ ≈ 0.18. This is because

of the interaction between the cost and benefit of a marginal change in τ , summarized in

Proposition 3. The cost of increased likelihood of shock arrival dominates the benefits of

decreases in liquidity cost and aggregate deadweight loss, resulting in a U-shaped graph.

However, the ex ante social welfare forms another larger U-shaped graph once τ reaches

the default threshold point at which the set of defaulting agents becomes just one shocked

agent. Therefore, the ex ante social welfare has a stark kink at the threshold point, where

the left-hand derivative and the right-hand derivative have different signs. This is due to the

sudden shift in the set of defaulting agents from all agents to only one agent.

3.3.3. Identification of Default Threshold Points

Given the importance of default threshold points on the evaluation of ex ante social wel-

fare with respect to settlement speed, finding the default threshold points of a given network

is crucial. However, if identification of default threshold points can be computationally com-

plex, our results, especially Theorem 1, would be difficult to utilize in practice. Hence, we

characterize the tractability of default threshold point identification. In particular, we show

that identification of default threshold points is solvable in polynomial time (i.e., a problem

in complexity class P).

First, we introduce an finite discretization of a continuous distribution G(ϵ). This is,

in practice, the only feasible way to simulate and compute continuous distributions. For-

mally, a finite discrete approximation of G(ϵ) is G̃(ϵ), which is supported on a finite set{
ϵ(1), . . . , ϵ(M)

}
. This approximation can be done by several methods including quantization

(divide the support into bins and take representative values) and Monte Carlo simulation.

For any desired level of precision, we can approximate the shock distribution G(ϵ) arbitrarily

close to that level of precision by adjusting the finite number M .

Proposition 4. Identification of the set of default threshold points is solvable in polynomial
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time. Moreover, each node’s default indicator is monotone in τ , so the number of threshold

points is at most n per shock realization ϵ.

Proposition 4 implies that the seemingly complex problem of identifying default threshold

points of a network is computationally tractable in polynomial time. In addition to simply

checking which points are the default threshold points in [0, T̄ ], we can also see how many

additional defaults are occurring at each default threshold point. Thus, we can identify

whether a network would have a sudden jump in deadweight loss, as in the case of the

complete network, or not. Therefore, the key insight of considering default threshold points

for the ex ante welfare calculations, highlighted by Theorem 1, can be utilized in practical

application to solving for the optimal settlement speed for financial stability, or evaluating

the effect of faster settlement speed on financial stability.

4. Empirical Implications

The model suggests that faster settlement can reduce the likelihood of stress events

but can increase the severity of stress events when they happen. This could be tested by

comparing the likelihood and severity of systemic events across markets or time periods with

different settlement speeds, controlling for other factors.

The model’s insights on how network structure affects contagion patterns could be em-

pirically tested. For instance, researchers could analyze payment system data to identify

whether more interconnected networks show a greater degree of contagion during stress

times.

Although we do not model government intervention explicitly, the role of the government

or central bank is crucial in maintaining stable payment systems, and our results provide

insights on this as well. An implicit benefit of a slower settlement speed (larger τ) is that the

government has less incentive to intervene in the ex-post event of a shock arrival. Conversely,

if settlement speed is fast and a shock arrives, despite its lower likelihood, the government
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has a much stronger incentive to intervene, as the ex-post cost of the systemic event is much

larger. This implies that faster settlement systems might paradoxically lead to more frequent

government interventions. Researchers could investigate this by comparing the frequency and

scale of government interventions in markets with different settlement speeds.

Lemma A.2 provides a justification for ex-post liquidity injection to central agents when a

shock arrives and causes a systemic event. This implies that policymakers and central banks

should focus on identifying and supporting the most systemically important institutions

during stress times. Historical examples of various emergency facilities for central entities in

payment systems, such as the Primary Dealer Credit Facility, are well justified by our results

and by various previous papers in the literature on bailouts.

Our model’s focus on ex ante welfare, incorporating both the likelihood and severity of

shocks, suggests a new framework for empirical assessments of payment system stability.

Further studies could compare traditional ex post measures with ex ante measures that

account for the probability of shock arrivals.

On a related note, our results suggest that optimal settlement speed may vary depending

on network structure and other parameters. This implies that a one-size-fits-all approach

to settlement speed regulation may be suboptimal. Empirical studies could identify the

parameter values and analyze whether a faster settlement speed can improve or worsen the

financial stability of a payment system.

These empirical implications suggest a set of empirically testable hypotheses and new

approaches to analyzing payment systems and financial networks. They also highlight the

importance of considering network structure, settlement speed, and systemic risk in an in-

tegrated framework when designing and evaluating financial market infrastructures.
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5. Conclusion

This paper provides a comprehensive analysis of the implications of settlement speed in

payment systems, taking into account the complex interactions between network structure,

netting efficiency, liquidity costs, and counterparty risks. We highlight the potential trade-

offs and identify key factors that influence the effect of a change in settlement speed. Our

results contribute to the ongoing debate about optimal settlement speeds in financial markets

and offer several key insights in the design and regulation of payment systems.

First, we show that faster settlements do not always lead to improved financial stability.

While quicker settlement can reduce the likelihood of counterparty defaults, it can also

increase liquidity costs and reduce netting opportunities. Our model shows that the optimal

settlement speed depends critically on the structure of the payment network, the distribution

of liquidity shocks, and the rates of changes in liquidity costs and netting efficiency.

Second, our results highlight the importance of network structure in determining the

systemic risk implications of settlement speed. We show that different network topologies,

such as the ring and complete networks, can respond very differently to changes in settlement

speed. Our results highlight the need for policymakers to consider the specific structure of

payment networks when designing settlement systems or implementing changes to settlement

speeds.

Third, we identify the existence of default threshold points—settlement times at which the

number of defaulting agents in the network changes discontinuously. These threshold points

play a crucial role in determining the ex-ante welfare implications of changes in settlement

speed. Our results show that the welfare effects of changing settlement speed can differ

dramatically depending on whether the system is operating at or above these threshold

points. Furthermore, we show that identification of the default threshold points of a given

network can be solved in polynomial time, thus, our results can be utilized in practical

applications.
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Fourth, we show that the node depth centrality is a key measure of an agent’s systemic

importance in the context of payment systems, consistent with the literature on general

financial networks. This measure captures how the initial impact of a default by one agent

is amplified through the network of defaulting agents, providing a useful tool for identifying

systemically important institutions in payment networks.

Our findings have several important policy implications. First of all, a one-size-fits-all

approach to settlement speed may be suboptimal, given the heterogeneity in network struc-

tures and other relevant parameters across different financial systems. Instead, policymakers

should carefully consider the underlying characteristics of each payment system when deter-

mining optimal settlement speeds.

Moreover, our results provide a theoretical underpinning for targeted liquidity support

to central entities of payment systems during times of stress. This aligns with and provides

a formal basis for various emergency facilities implemented by central banks during financial

crises.

Relatedly, our results imply that faster settlements can decrease the likelihood of crisis

events but increase the severity of the crises. Thus, faster settlement systems might paradox-

ically lead to more frequent government interventions due to stronger incentives to intervene

when a crisis is more severe. This insight should be further accounted for when deciding

settlement speeds in payment systems.

While our model provides significant insights, it also opens up several avenues for future

research. Extensions could include incorporating strategic behavior by agents, analyzing

more general network structures, such as core-periphery networks, or considering multi-

period dynamics. In addition, empirical work testing the predictions of our model across

different payment systems and market structures would be valuable to expand our under-

standing and provide concrete policy implications.
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Appendix (for online publication only)

A. Omitted Proofs

A.1. Proof of Proposition 1

Proof. Without loss of generality, assume that agent 1 receives the liquidity shock.

1. First, consider the complete network.

(a) Case 1.1. Suppose that the relative size of the liquidity shock is small as ϵ̄ ≤

n(ē − s̄ − L(τ)). First consider the case in which the relative size of the total

liabilities is small as α(τ)d̄ ≤ ϵ̄−(ē− s̄−L(τ)). Hence, even with all the payments

received, agent 1 does not have any excess cash to cover the liquidity shock and

the senior debt, i.e. agent 1 fully defaults on all the liabilities towards other agents

in the network.

Then, for any agent j ≥ 2 to survive, the following should hold:

ē− s̄− L(τ) +
n− 2

n− 1
α(τ)d̄ ≥ α(τ)d̄. (18)

Rearranging (18) yields

(n− 1)(ē− s̄− L(τ)) ≥ α(τ)d̄.

This holds because

α(τ)d̄ ≤ ϵ̄− (ē− s̄− L(τ)) ≤ (n− 1)(ē− s̄− L(τ)),

where the first inequality comes from the relative size of the total liabilities, and

the second inequality comes from the relatively small size of the liquidity shock.
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Therefore, (18) holds, so only agent 1 defaults.

Since all other agents are paying in full, A1 = ē+ α(τ)d̄. Then,

ξ1 = α(τ)d̄+ s̄+ ϵ− ē+ L(τ)− α(τ)d̄

= s̄+ ϵ− ē+ L(τ),

and the total deadweight loss from default in this case is

min
{
β (s̄+ ϵ− ē+ L(τ)) , ē+ α(τ)d̄

}
.

Case 1.2. Now consider the case in which the relative size of the total liabilities

is large as α(τ)d̄ > ϵ̄−(ē− s̄−L(τ)). Then, all the payments received from agents

2 through n will exceed the cash amount required to pay for the liquidity shock

for agent 1. Then, all agents survive if

n(ē− s̄− L(τ)) ≥ ϵ̄,

which is immediately satisfied by the small shock assumption. Therefore, only

agent 1 defaults in this case as well.

Since agent 1 is receiving all the liabilities from other agents in full, A1 = ē+α(τ)d̄.

Therefore,

ξ1 = α(τ)d̄+ s̄+ ϵ̄− ē+ L(τ)− α(τ)d̄

= s̄+ ϵ̄− ē+ L(τ).

Hence, the total deadweight loss from default is

min
{
β (s̄+ ϵ̄− ē+ L(τ)) , ē+ α(τ)d̄

}
.
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Case 1.3. Next, suppose that the relative size of the liquidity shock is large as

ϵ̄ > n(ē− s̄−L(τ)) but the relative size of the total liabilities is small as α(τ)d̄ ≤

(n − 1)(ē − s̄ − L(τ)). Because the liquidity shock exceeds the aggregate cash

in the network, agent 1 will be fully defaulting on its payments to other agents.

Therefore, (18) should hold for the remaining agents to survive. Rearranging (18)

implies

(n− 1)(ē− s̄− L(τ)) ≥ α(τ)d̄,

which is immediately satisfied by the assumption on the relative size of the total

liabilities. Therefore, no other agents default in this case.

Since all other agents are paying in full, A1 = ē+ α(τ)d̄. Then,

ξ1 = α(τ)d̄+ s̄+ ϵ− ē+ L(τ)− α(τ)d̄

= s̄+ ϵ− ē+ L(τ),

and the total deadweight loss from default in this case is

min
{
β (s̄+ ϵ− ē+ L(τ)) , ē+ α(τ)d̄

}
.

(b) Suppose that the relative size of the liquidity shock is large as ϵ̄ > n(ē− s̄−L(τ)),

and the relative size of the total liabilities is large as α(τ)d̄ > (n−1)(ē− s̄−L(τ)).

Again, due to the size of the liquidity shock, agent 1 fully defaults on its payments

to other agents, and the no default condition for other agents is (18). Again, (18)

is equivalent to

(n− 1)(ē− s̄− L(τ)) ≥ α(τ)d̄,
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which contradicts the condition for the relative size of the total liabilities. There-

fore, all agents default in this case.

Finally, we compute the total deadweight loss amount from defaults in this case.

First, note that x1 = 0, as the liquidity shock is larger than the total amount of

cash in the network, i.e. there will be no remaining asset value even if all other

agents pays their full cash amount to agent 1. Second, due to symmetry, all other

agents will pay the same amount, i.e. x2 = x3 = · · · = xn = x̄. Plugging this into

(4) implies

x̄ = ē− s̄− L(τ) +
(n− 2)x̄

n− 1
.

Thus, we derive

x̄ = (n− 1)(ē− s̄− L(τ)).

Then, plugging this into the definition Aj yields

Aj = ē+
n− 2

n− 1
(n− 1)(ē− s̄− L(τ))

⇒ Aj = ē+ (n− 2)(ē− s̄− L(τ)) (19)

for any j > 1. Thus, the total payment shortfall is

ξj = α(τ)d̄+ s̄+ L(τ)− Aj

⇒ ξj = α(τ)d̄+ s̄− (n− 1)(ē− L(τ)) + (n− 2)s̄

⇒ ξj = α(τ)d̄− (n− 1)(ē− L(τ)− s̄) (20)

for each j > 2 after plugging in (19). By construction, A1 = ē+(n−1)(ē−s̄−L(τ)),
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and

ξ1 = α(τ)d̄+ s̄+ L(τ) + ϵ̄− A1

= α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ)).

Thus, the total deadweight loss from defaults is

min
{
β
[
α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ))

]
, ē+ (n− 1)(ē− s̄− L(τ))

}
+(n− 1)min

{
β
[
α(τ)d̄− (n− 1)(ē− L(τ)− s̄)

]
, ē+ (n− 2)(ē− s̄− L(τ))

}
.

2. Now consider the ring network.

(a) Case 2.1. Suppose that the relative size of the liquidity shock is small as ϵ̄ ≤

n(ē − s̄ − L(τ)). Hence, if all agents combine their available liquidity buffers,

they can either pay the promised payment in full even without any payment

from agent 1, when the total liabilities for each agent is small, or can reuse the

payments received by agent 1 and exceed the liquidity shock amount by combined

payments, when the total liabilities for each agent is large. In either case, agent

1 will receive the full payment α(τ)d̄ from agent n. Therefore, agent 1 pays

x1 = ϕ ≡
[
ē− s̄− L(τ) + α(τ)d̄− ϵ̄

]+
to agent 2. Then, agent 2 can reuse this payment amount on top of its own cash

buffer ē− s̄− L(τ) to pay agent 3, and agent 3 can reuse the whole payment on

top of its own cash buffer ē − s̄ − L(τ), and so on. In other words, by the same
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iterative steps,

x2 = ē− s̄− L(τ) + ϕ

x3 = 2(ē− s̄− L(τ)) + ϕ

x4 = 3(ē− s̄− L(τ)) + ϕ

...

xk = (k − 1)(ē− s̄− L(τ)) + ϕ.

By the initial assumption on the shock size, there exists an integer k such that

k(ē− s̄− L(τ)) + ϕ ≥ α(τ)d̄,

and rearranging the condition implies the smallest k is equivalent to

ψ = min

{
n− 1,

⌊
α(τ)d̄− ϕ

ē− s̄− L(τ)

⌋}
,

where ⌊·⌋ denotes the floor function, i.e., the greatest integer that is less than

or equal to the argument ·. Now we calculate the total deadweight loss from the

defaults of ψ agents and agent 1. First, note that agent 1 receives the full payment

amount, so A1 = ē+ α(τ)d̄, and ξ1 = s̄+ ϵ̄− ē+L(τ). Thus, the deadweight loss

from agent 1’s default is

min
{
β(s̄+ ϵ̄− ē+ L(τ)), ē+ α(τ)d̄

}
.

Second, note that agent 2 receives ϕ from agent 1, so A2 = ē + ϕ. Thus, ξ2 =

α(τ)d̄ + s̄ − ē + L(τ) − ϕ. From this, we can also compute A3 = ē + x2 =
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2ē− s̄−L(τ)+ϕ, and ξ3 = α(τ)d̄−2(ē− s̄−L(τ))−ϕ. Similarly, for any m ≤ ψ,

Am+1 = ē+ (m− 1)(ē− s̄− L(τ)) + ϕ

ξm+1 = α(τ)d̄−m(ē− s̄− L(τ))− ϕ.

Therefore, the total deadweight loss from defaults is

min
{
β(s̄+ ϵ̄− ē+ L(τ)), ē+ α(τ)d̄

}
+

ψ∑
m=1

min
{
β
(
α(τ)d̄−m(ē− s̄− L(τ))− ϕ

)
, ē+ (m− 1)(ē− s̄− L(τ)) + ϕ

}
,

Case 2.2. Finally, suppose that the relative size of the liquidity shock is large

as ϵ̄ > n(ē − s̄ − L(τ)), but the relative size of the total liabilities is small as

α(τ)d̄ ≤ (n − 1)(ē − s̄ − L(τ)). Then, agent n can still pay its full liabilities to

agent 1, and the rest of the payment structure would be the same. Therefore, all

the previous arguments go through and the total deadweight loss from defaults is

the same.

(b) Suppose that the relative size of the liquidity shock is large as ϵ̄ > n(ē− s̄−L(τ)),

and the relative size of the total liabilities is also large as α(τ)d̄ > (n− 1)(ē− s̄−

L(τ)).

Then, all agents default, and agent 1 cannot even pay the liquidity shock and

senior debt, as shown in the complete network case (Statement 1). Hence, ϕ = 0,

and even agent n cannot pay its payment obligation in full as

(n− 1)(ē− s̄− L(τ)) < α(τ)d̄.

Thus, all agents default in this case.

Finally, we compute the total deadweight loss in this case. As agents 2 through
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n will accumulate all their available liquidity and pay agent 1, xn = (n − 1)(ē −

s̄− L(τ)), implying

A1 = ē+ (n− 1)(ē− s̄− L(τ))

ξ1 = α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ)).

Thus, the deadweight loss from agent 1’s default is

min
{
β
[
α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ))

]
, ē+ (n− 1)(ē− s̄− L(τ))

}
.

Since agent 2 receives nothing from agent 1,

A2 = ē

ξ2 = α(τ)d̄− (ē− s̄− L(τ)).

Similarly, agent 3 receives x2 = ē− s̄− L(τ), so

A3 = ē+ (ē− s̄− L(τ))

ξ2 = α(τ)d̄− 2(ē− s̄− L(τ)).

Iteratively, we obtain

Am+1 = ē+ (m− 1)(ē− s̄− L(τ))

ξm+1 = α(τ)d̄−m(ē− s̄− L(τ)).
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Therefore, the total deadweight loss from default is

min
{
β
[
α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ))

]
, ē+ (n− 1)(ē− s̄− L(τ))

}
+

n−1∑
m=1

min
{
β
(
α(τ)d̄−m(ē− s̄− L(τ))

)
, ē+ (m− 1)(ē− s̄− L(τ))

}
,

which is greater than (8) for a small enough β, because m ≤ n− 1.
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A.2. Proof of Corollary 1

Proof. Recall that ϵ∗(τ) = n(ē − s̄ − L(τ)) and d∗(τ) = (n − 1)(ē − s̄ − L(τ)) and the

threshold conditions are

ϵ̄ > n(ē− s̄− L(τ))

α(τ)d̄ > (n− 1)(ē− s̄− L(τ)).

Thus, by rearranging both threshold conditions we obtain

L(τ) > ē− s̄− ϵ̄

n

L(τ) > ē− s̄− α(τ)
d̄

n− 1
,

where the first inequality comes from rearranging the threshold condition for ϵ̄ and the second

inequality comes from the rearranged threshold condition for d̄. Since both conditions should

be simultaneously satisfied, we can combine the two conditions as the following

L(τ) > max

{
ē− s̄− ϵ̄

n
, ē− s̄− α(τ)

d̄

n− 1

}
⇒ L(τ) > ē− s̄−min

{
ϵ̄

n
, α(τ)

d̄

n− 1

}
. (21)

Note that τ ∗ such that L(τ ∗) ≡ ē− s̄−min

{
ϵ̄

n
, α(τ ∗)

d̄

n− 1

}
holds is unique, because L(τ)

is strictly decreasing in τ , while α(τ) is decreasing in τ . Therefore, for any τ > τ ∗, the

combined threshold condition, (21), is satisfied, and vice versa.
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A.3. Proof of Proposition 2

Proof. First, note that the identity of the agent hit by a shock is irrelevant due to the

symmetry of the network structure for both the complete and the ring networks. Suppose

that τ is large enough so that L(τ) < L∗(τ). If D is the complete network, then the marginal

change in the ex ante welfare loss is

∂W (τ,Dc)

∂τ
= nL′(τ) + F ′(τ)β (s̄+ ϵ̄− ē+ L(τ)) + F (τ)βL′(τ). (22)

If D is the ring network, then the marginal change in the ex ante welfare loss is

∂W (τ,Dr)

∂τ
=nL′(τ) + F ′(τ)

[
β (s̄+ ϵ̄− ē+ L(τ))

+

ψ∑
m=1

β
(
α(τ)d̄−m(ē− s̄− L(τ))

)]
(23)

+ F (τ)

[
βL′(τ) +

ψ∑
m=1

β
(
α′(τ)d̄+mL′(τ)

)]
,

if ϕ ≡
[
ē− s̄− L(τ) + α(τ)d̄− ϵ̄

]+
= 0, and

∂W (τ,Dr)

∂τ
=nL′(τ) + F ′(τ)

[
β (s̄+ ϵ̄− ē+ L(τ))

+

ψ∑
m=1

β (ϵ̄− (m+ 1)(ē− s̄− L(τ))− ϕ)

]
(24)

+ F (τ)

[
βL′(τ) +

ψ∑
m=1

β
(
(m+ 1)L′(τ)− α′(τ)d̄

)]
,

if ϕ > 0, where ψ ≡ min
{
n− 1,

⌊
α(τ)d̄−ϕ
ē−s̄−L(τ)

⌋}
.

The comparison between the marginal change in the ex ante welfare loss for the complete

network and that for the ring network is ambiguous. For example, (23) subtracted by (22)
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implies

F ′(τ)

ψ∑
m=1

β
[
α(τ)d̄−m (ē− s̄− L(τ))

]
+ F (τ)

ψ∑
m=1

β
[
α′(τ)d̄+mL′(τ)

]
,

which can be positive or negative depending on the parameter values β, ē, s̄, d̄ as well as the

functional forms of α(τ), F (τ), and L(τ), because F ′(τ) < 0 and F (τ) > 0.

Now suppose that τ is small enough so that L(τ) ≥ L∗(τ). We first show that every

agent in the ring network defaults even if L(τ) = L∗(τ).

Case 1. Suppose that
ϵ̄

n
≤ α(τ)

d̄

n− 1
. Then, n(ē−s̄−L(τ) = ϵ̄ and (n−1)(ē−s̄−L(τ)) ≤

α(τ)d̄. Therefore, ϕ = 0 and ψ = n− 1.

Case 2. Suppose
ϵ̄

n
> α(τ)

d̄

n− 1
. Then, (n− 1)(ē− s̄− L(τ)) = α(τ)d̄ and n(ē− s̄−

L(τ)) < ϵ. Therefore, ϕ = 0 and ψ = n− 1.

Therefore, even at the verge of the threshold condition, the ring network already has full

contagion.

Recall that the aggregate deadweight loss in the complete network is

β
[
α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ))

]
+ (n− 1)β

[
α(τ)d̄− (n− 1)(ē− L(τ)− s̄)

]
=β

[
nα(τ)d̄+ ϵ̄−

(
n+ (n− 1)2

)
(ē− s̄− L(τ))

]
.

The marginal change in ex ante welfare loss with respect to τ is

∂W (τ,Dc)

∂τ
=nL′(τ) + F ′(τ)β

[
nα(τ)d̄+ ϵ̄−

(
n+ (n− 1)2

)
(ē− s̄− L(τ))

]
+ F (τ)β

[
nd̄α′(τ) +

(
n+ (n− 1)2

)
L′(τ)

]
.

(25)
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Now recall that the aggregate deadweight loss in the ring network is

β

[
α(τ)d̄+ ϵ̄− n(ē− s̄− L(τ)) +

n−1∑
m=1

(
α(τ)d̄−m(ē− s̄− L(τ))

)]

=β

[
nα(τ)d̄+ ϵ̄− n(ē− s̄− L(τ))−

n−1∑
m=1

m(ē− s̄− L(τ))

]

=β

[
nα(τ)d̄+ ϵ̄− n(ē− s̄− L(τ))− n(n− 1)

2
(ē− s̄− L(τ))

]
=β

[
nα(τ)d̄+ ϵ̄− n(n+ 1)

2
(ē− s̄− L(τ))

]
,

Therefore, the marginal change in the ex ante welfare loss with respect to τ is

∂W (τ,Dr)

∂τ
=nL′(τ) + F ′(τ)β

[
nα(τ)d̄+ ϵ̄− n(n+ 1)

2
(ē− s̄− L(τ))

]
+ F (τ)β

[
nd̄α′(τ) +

n(n+ 1)

2
L′(τ)

]
,

(26)

because ϕ ≡
[
ē− s̄− L(τ) + α(τ)d̄− ϵ̄

]+
= 0 by the assumption.

Subtracting (25) from (26) implies

∂W (τ,Dr)

∂τ
− ∂W (τ,Dc)

∂τ
=F ′(τ)β

[(
n+ (n− 1)2

)
− n(n+ 1)

2

]
(ē− s̄− L(τ))

− F (τ)β

[(
n+ (n− 1)2

)
− n(n+ 1)

2

]
L′(τ).

(27)

Since (ē− s̄− L(τ)) is positive and −L′(τ) is positive, (27) is positive, because

[(
n+ (n− 1)2

)
− n(n+ 1)

2

]
> 0. (28)
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The previous inequality (28) holds because

n+ (n− 1)2 >
n(n+ 1)

2

2n2 − 2n+ 2 > n2 + n

n2 + 2 > 3n,

which holds for any n > 2. Therefore,
∂W (τ,Dc)

∂τ
<
∂W (τ,Dr)

∂τ
holds.

Moreover, since there is a gap between
∂SW (τ,Dc)

∂τ
and

∂SW (τ,Dr)

∂τ
, the following

inequalities

nL′(τ) + F ′(τ)β

[
nα(τ)d̄+ ϵ̄− n(n+ 1)

2
(ē− s̄− L(τ))

]
+ F (τ)β

[
nd̄α′(τ) +

n(n+ 1)

2
L′(τ)

]
> 0

>nL′(τ) + F ′(τ)β
[
nα(τ)d̄+ ϵ̄−

(
n+ (n− 1)2

)
(ē− s̄− L(τ))

]
+ F (τ)β

[
nd̄α′(τ) +

(
n+ (n− 1)2

)
L′(τ)

]
(29)

hold, depending on the parameters and functional forms. Thus, for the same τ increase, the

complete network can be better off while the ring network can be worse off.
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A.4. Proof of Lemma 1

Proof. Recall that the payment vector is

x =
[
min

{
α(τ)d̄1, Qx+ ē1− s̄1− L(τ)1− ϵ− βξ

}]+
,

where the payment shortfall is

ξ(τ) =
[
α(τ)d̄1+ s̄1+ ϵ− ē1+ L(τ)1−Qx

]+
.

Suppose that τ < τ ′. We compare the payment shortfalls and the sets of defaulting

agents for these two different settlement times.

Case 1. If xj = α(τ)d̄, then ξj = 0, and xj remains α(τ)d̄ as τ increases, and thus, ξj

remains to be zero.

Case 2. Suppose that the agent under liquidity shock defaults on its senior liabilities

with τ but not with τ ′. If xj < α(τ)d̄ and xj = α(τ ′)d̄ due to the decrease in liabilities

through more netting by α(τ ′), then ξj decreases to zero under τ ′.

Case 3. Now consider the last case such that xj < α(τ ′)d̄. As noted previously, S(τ) ⊆

S(τ ′) and D(τ ′) ⊆ D(τ), as agents who are solvent in τ remains to be solvent in τ ′.

Case 3.1. Suppose that the agent hit by liquidity shock j does not default on its senior

liabilities with τ ′. We can permutate the network into a matrix such that the payment

equilibrium vector is x =

 xD

α(τ ′)d̄1

, where xD is payments by agents in the defaulting

set D(τ ′). The payments by agents in the defaulting set is

xd = α(τ ′)d̄Qds1+Qddxd1+ [(ē− s̄− L(τ ′))1− ϵd − βξd] ,

where Qds is the liability weight matrix from S(τ ′) to D(τ ′), Qdd is the liability weight matrix

within D(τ ′), and ϵd and ξd are subvectors of ϵ for D(τ) and ξ for D(τ ′), respectively. Because
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Q is a stochastic matrix, Qds +Qdd = 1, so the payment vector becomes

xd = (I −Qdd)
−1 [α(τ ′)d̄Qds1+ (ē− s̄− L(τ ′))1− ϵd − βξd

]
⇒ xd = (I −Qdd)

−1 [α(τ ′)d̄ (I −Qdd)1+ (ē− s̄− L(τ ′))1− ϵd − βξd
]

⇒ xd = α(τ ′)d̄1+ (I −Qdd)
−1 [(ē− s̄− L(τ ′))1− ϵd − βξd] < α(τ ′)d̄1, (30)

where I denotes the identity matrix of the appropriate dimension, and the last inequality of

(30) holds, because agents in D(τ ′) default.

Now consider the case with τ . We show that even when there are no additional defaults,

i.e., D(τ ′) = D(τ), the aggregate deadweight loss is greater than that under τ ′, resulting in

even greater payment shortfall due to an increase in βξd.

If any agent in D(τ) can no longer meet their senior liabilities, then we have an increase

in deadweight losses. Suppose the contrary and agents can still meet their senior liabilities.

By L(τ) > L(τ ′), we have

(I −Qdd)
−1 [(ē− s̄− L(τ))1− ϵd − βξd]

< (I −Qdd)
−1 [(ē− s̄− L(τ ′))1− ϵd − βξd] < 0,

where the last inequality holds by (30). Then, it is immediate that xd(τ) < α(τ)d̄1. In

addition, the payment shortfall increases as

α(τ)d̄1− xd = (I −Qdd)
−1 [(ē− s̄− L(τ))1− ϵd − βξd(τ)]

≥ (I −Qdd)
−1 [(ē− s̄− L(τ))1− ϵd − βξd(τ

′)]

> (I −Qdd)
−1 [(ē− s̄− L(τ ′))1− ϵd − βξd(τ

′)] ,

where ξd(τ) and ξd(τ
′) denote the payment shortfall amounts with τ and τ ′, respectively.

Therefore, the aggregate deadweight loss is greater with τ .

Case 3.2. Suppose that the agent under liquidity shock defaults on its senior liabilities
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for both τ and τ ′. First, we show the following lemma.

Lemma A.1. Suppose that the agent under liquidity shock f defaults on its senior liabilities.

If D(τ) denotes the set of all other defaulting agents, then

(I −Qdd)
−1 [(ē− s̄− L(τ))1− βξd(τ)− α(τ)d̄Qdf

]
< 0. (31)

Further, if (31) is satisfied for a subset of agents D(τ), then all agents in D(τ) default.

Proof of Lemma A.1. For the first statement, suppose that the set of defaulting agents

except agent f is D(τ) and the complement set, i.e., the set of solvent agents is S(τ). Then,

by the assumption,

xd = Qddxd + α(τ)d̄Qds1+ (ē− s̄− L(τ))1− βξd(τ)

⇒ xd = (I −Qdd)
−1 [α(τ)d̄Qds1+ (ē− s̄− L(τ))1− βξd(τ)

]
.

Since Q is a stochastic matrix, Qds1+Qdd1+Qdf = 1, implying that

Qds1+Qdf = (I −Qdd)1

⇒Qds1− (I −Qdd)1 = −Qdf .

Since agents in D(τ) default, the payment vector xd is less than the promised payment α(τ)d̄.

Therefore,

(I −Qdd)
−1 [α(τ)d̄Qds1+ (ē− s̄− L(τ))1− βξd(τ)

]
< α(τ)d̄1

⇒ (I −Qdd)
−1 [α(τ)d̄ (Qds1− (I −Qdd)1) + (ē− s̄− L(τ))1− βξd(τ)

]
< 0

⇒ (I −Qdd)
−1 [−α(τ)d̄Qdf + (ē− s̄− L(τ))1− βξd(τ)

]
< 0,

which shows the first statement.

For the second statement, suppose that (A.1) is satisfied for the agents in D(τ). Again
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using the fact that Q is a stochastic matrix, we obtain

(I −Qdd)
−1 [(ē− s̄− L(τ))1− βξd(τ)− α(τ)d̄Qdf

]
< 0

⇒ (I −Qdd)
−1 [α(τ)d̄Qds1+ (ē− s̄− L(τ))1− βξd(τ)

]
< α(τ)d̄1,

which implies that even if no other agents in N\D(τ) default, all agents in D(τ) cannot pay

their liabilities. Therefore, all agents in D(τ) default.

As in the assumption of Lemma A.1, denote the agent under liquidity shock, the set of

defaulting agents other than the agent under liquidity shock, and the set of solvent agents

as f , D(τ ′), and S(τ ′), respectively. By Lemma A.1,

(I −Qdd)
−1 [(ē− s̄− L(τ ′))1− βξd(τ

′)− α(τ ′)d̄Qdf

]
< 0.

Because entries in Qdd is a sub-stochastic matrix with non-negative real numbers, I − Qdd

is an M-matrix, which is a matrix whose off-diagonal entries are less than or equal to zero

and whose eigenvalues have nonnegative real parts.18 Therefore, (I −Qdd)
−1 is an inverse

M-matrix and has nonnegative elements, implying

(I −Qdd)
−1 [(ē− s̄− L(τ))1− βξd(τ

′)− α(τ)d̄Qdf

]
< 0,

as L(τ) > L(τ ′) and α(τ) > α(τ ′). Then, the payment shortfalls are greater under τ , hence,

(I −Qdd)
−1 [(ē− s̄− L(τ))1− βξd(τ)− α(τ)d̄Qdf

]
< (I −Qdd)

−1 [(ē− s̄− L(τ))1− βξd(τ
′)− α(τ)d̄Qdf

]
< 0,

and the set of defaulting agents under τ is a superset of the set of defaulting agents with τ ′,

18If matrix A can be expressed as A = sI −B, s ≥ ρ(B), B ≥ 0, where ρ(B) is the spectral radius of B,
then A is an M-matrix (Berman and Plemmons, 1979, p. 133). An M-matrix is non-singular if s > ρ(B). See
the appendix of Chang and Chuan (2024) for more details of how the concept of M-matrix can be applied
to financial contagion.
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as in the second statement of Lemma A.1. Hence, the aggregate deadweight loss is greater

with τ .

Case 3.3. Finally, suppose that the agent under liquidity shock defaults on its senior

liabilities with τ ′ but not with τ . In this case, the agent under liquidity shock, agent f ,

receives more payments from others, as α(τ)d̄ > α(τ ′)d̄ for the payments from solvent

agents, and able to pay its senior liabilities under τ . From Cases 1 and 2, D(τ ′) ⊆ D(τ) as

noted in the beginning of Case 3. Then, by following the same steps in Case 3.1,

α(τ)d̄1− xd(τ) > α(τ ′)d̄1− xd(τ
′) ≥

∑
j∈N

ξj,

where xd(τ
′) includes the negative payment from agent f with xf (τ

′) = 0 by the initial

assumption of Case 3.3. Therefore, the aggregate deadweight loss is greater with τ .
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A.5. Statement and Proof of Lemma A.2

Lemma A.2. The vector of defaulting amounts α(τ)d̄1 − xd, where each entry is α(τ)d̄ −

xj(τ,D, ϵ) for each j ∈ D(τ, ϵ) can be represented as

α(τ)d̄ (1+ βC(D(τ, ϵ))1) + (1 + β) (C(D(τ, ϵ))L(τ)1− C(D(τ, ϵ))(e− s− ϵ)) , (32)

where C(D(τ, ϵ)) ≡
(
I − (1 + β)QD(τ,ϵ)

)−1
, and C(D(τ, ϵ))1 is the |D(τ, ϵ)|×1 vector of node

depth centrality.

Proof. We can express (15) in a matrix notation as

α(τ)d̄1− xd = (1 + β)
(
α(τ)d̄1+ s+ ϵ+ L(τ)1− e−QD(τ,ϵ)xd

)
.

Rearranging the expression to collect xd term yields

(
I − (1 + β)QD(τ,ϵ)

)
xd = −βα(τ)d̄1+ (1 + β) (e− s− ϵ− L(τ)1)

⇒ xd =− βα(τ)d̄
(
I − (1 + β)QD(τ,ϵ)

)−1
1+ (1 + β)

(
I − (1 + β)QD(τ,ϵ)

)−1
(e− s− ϵ− L(τ)1)

⇒ xd =− βα(τ)d̄C(D(τ, ϵ))1+ (1 + β)C(D(τ, ϵ)) (e− s− ϵ− L(τ)1) . (33)

Plugging (33) into α(τ)d̄1− xd implies

α(τ)d̄1− xd

= α(τ)d̄ [1+ βC(D(τ, ϵ))1] + (1 + β)L(τ)C(D(τ, ϵ))1− (1 + β)C(D(τ, ϵ))(e− s− ϵ),

i.e., the expression in (32).
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A.6. Proof of Theorem 1

Proof. For the first part, by Proposition 3, we know that the cost and benefits of an increase

in τ depends on the functional forms of the liquidity cost, the probability of shock arrival,

and the netting efficiency. From (32), we know that the conditional aggregate deadweight

loss depends on the centrality of agents in the defaulting set.

Furthermore, from (32), the decrease in the aggregate deadweight loss
∂ξj(τ,D, ϵ)

∂τ
equals

1

1 + β

∑
j∈D(τ,ϵ)

[
(1 + βCj(D(τ, ϵ)))α′(τ)d̄+ (1 + β)Cj(D(τ, ϵ))L′(τ)

]
.

Then, the expression (14) has to be multiplied by the probability of the realization of the

liquidity shock ϵ, G(ϵ).

For the second part, we first show that an increase in the set of defaulting agents results

in a discontinuous jump in the aggregate deadweight loss. The definition of node depth

centrality in (17) implies that an increase in the set of defaulting agents leads to a discrete

increase in the centrality, because

1 + (1 + β)
∑

k∈D(τ,ϵ)

qkj + · · ·

<1 + (1 + β)
∑

k∈D(τ ′,ϵ)

qkj + · · · ,

if D(τ, ϵ) ⊂ D(τ ′, ϵ) and D(τ ′, ϵ) ̸⊂ D(τ, ϵ). Furthermore, the initial summation of (17)

includes more agents in D(τ ′, ϵ). Therefore, the aggregate deadweight loss shows a discrete

jump when there is an increase in the set of defaulting agents.

Because τ is a default threshold point, by definition, D(τ, ϵ) ⊂ D(τ−δ, ϵ) and D(τ−δ, ϵ) ̸⊂

D(τ, ϵ) for any small δ > 0. Therefore, a change from τ − δ to τ will result in a change in

the defaulting set and discrete decrease in the aggregate deadweight loss. Such a change

is multiplied by the shock realization probability G(ϵ) and the probability of shock arrival
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F (τ).

Because all functions are continuously changing in τ and are linearly combined for the

ex ante welfare loss and payment shortfall function, they are continuous in τ . Thus, a

marginal increase in τ from a threshold point does not result in an additional solvency, as

there is already a discrete jump in payments due to the reduction of defaulting set of agents.

Therefore, the right-hand derivative of the ex ante welfare loss does not involve a discrete

change in welfare loss. Hence,
∂W (τ,D)

∂τ−
<
∂W (τ,D)

∂τ+
.
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A.7. Proof of Proposition 4

Proof. Step 1. Solving payment equilibrium is polytime. For any given τ , computing

the payment equilibrium clearing vector x(τ,D, ϵ) reduces to solving a fixed-point iteration

in the framework of Eisenberg and Noe (2001) with a default cost extension. Rogers and

Veraart (2013) show that this algorithm finds a fixed point at most in n steps of iteration.

Therefore, D(τ, ϵ) can be computed in n steps or in polynomial time for any τ .

Step 2. Monotonicity. By Lemma 1, D(τ, ϵ) is monotonically (weakly) decreasing in τ .

Thus, each agent’s status of being default or solvent switches only once as τ increases.

Step 3. Checking existence of a default threshold point. For the given network

D and parameters and functional forms (β, ē, s̄, α(·), L(·)), and shock realization ϵ, fix an

interval [a, b] ⊂ R+. We first ask whether there exists τ̃ ∈ [a, b] such that τ̃ ∈ T (D, ϵ). This

is equivalent to computing D(a, ϵ) and D(b, ϵ), which is polytime as shown in Step 1. If

D(a, ϵ) = D(b, ϵ), then by Step 2, no threshold exists in [a, b]. If D(a, ϵ) ̸= D(b, ϵ), then at

least one default threshold point exists. This entire procedure is again solvable in polynomial

time.

Step 4. Binary search. If an agent j’s status switches within the interval [a, b], i.e.,

j ∈ D(a, ϵ) and j /∈ D(b, ϵ), then there exists a default threshold point. By Step 2, there

are at most n thresholds. Each can be located to precision δ by binary search: iteratively

evaluating D(τ, ϵ) at midpoints until the switch point is bracketed within a subinterval. This

requires O

(
log

(
b− a

δ

))
of payment equilibrium solves per agent. Thus, for any arbitrary

precision δ > 0, the overall procedure is solvable in polynomial time.

Step 5. Approximation by discretization. By step 4, for any arbitrary precision δ > 0,

we can compute the default threshold points for a given ϵ, T (D, ϵ). If the distribution G(ϵ)

is discrete, then we are done. Now suppose that G(ϵ) is a continuous distribution. Then, an

approximation of G(ϵ) is G̃(ϵ), which is supported on a finite set
{
ϵ(1), . . . , ϵ(M)

}
. Then, the
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union of default threshold points for the approximation, i.e.,

T̃ (D) ≡
M⋃
m=1

T (D, ϵ(m)) (34)

is computable in polynomial time.
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B. Details of Netting

In this section, we discuss the details of various netting procedures and the resulting full

netting matrices.

The simplest netting procedure is bilateral netting—netting the payments between two

agents in all existing pairs. The full netting matrix under bilateral netting of the payment

network D is

D =
[
D −DT

]+
. (35)

There are multiple ways to perform multilateral netting or portfolio compression. One of

the more relevant and realistic netting procedure is simply eliminating cycles that D’Errico

and Roukny (2021) defined as conservative portfolio compression. For example, Veraart

(2022) builds upon D’Errico and Roukny (2021) and considers the effect of eliminating all

cycles by a degree of µ. Therefore, our model is generalizing the netting (or compression) in

her model by allowing time-varying degree of netting, α(τ). The exact procedure of obtaining

the full netting matrix under this cycle elimination is the following:19

1. Fix the index κ = 1 and define D0 ≡ D.

2. From the matrix Dκ−1, find a cycle, indexed by κ, which is a sequence of agents

i0, . . . , iK , for some K ≥ 2 such that i0 = iK , iℓ ̸= i0, and dκ−1
iℓ+1iℓ

≥ dκ > 0 for each

ℓ < K, where dκ ≡ maxδ

{
δ ≤ dκ−1

iℓ+1iℓ
: ∀0 ≤ ℓ < K

}
.

3. Subtract dκ from each dκ−1
iℓ+1iℓ

along the cycle κ. Denote the new matrix as Dκ.

4. If there is a cycle in Dκ, return to step 2. If there is no cycle, define the resulting

matrix as the full netting matrix D ≡ Dκ.

19This procedure is equivalent to obtaining the µ-compressed liabilities matrix with µ = µmax in Veraart
(2022). Note that instead of changing the parameter µ, we set the time varying value of 1−α(τ) for the degree
of netting. Our procedure is closer to how to design numerical procedures, which might be computationally
intensive as shown by Jackson and Pernoud (2024).
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Figure 6: An example of non-zero full netting matrix

Note: The left graph depicts the network, in which agent A owes 1 to agent B, who owes 1 to agent C,

before netting. The right graph depicts the same network after full netting, in which agent B still owes 1 to

agent C.

If a network is regular, then the full netting matrix under this procedure will be D = 0.

However, the full netting matrix can be a non-zero matrix for non-regular networks. For

example, consider a simple ring network as depicted in the left panel of Figure 6. Agent A

owes 1 to agent B, agent B owes 2 to agent C, and agent C owes 1 to agent A. The netting

procedure can eliminate the cycle up to the maximum of 1. Therefore, as in the right panel

of Figure 6, agent B still owes 1 to agent C after the full netting procedure. The full netting

matrix is not a zero matrix in this example.
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C. Discussion of Social Welfare

In this section, we define the ex ante (expected) social welfare and discuss how it relates

to the ex ante welfare loss defined in (6).

Define the expected transfer from agent i to the sources of liquidity shock as Ti ≡

F (τ)1/nϵ. As previously mentioned, we consider transfers to liquidity shock as simple trans-

fers of wealth from agents to senior creditors and vice versa. The sum of agents’ expected

utilities plus the expected transfers to liquidity shock net of the deadweight loss incurred to

external agents is

∑
i∈N

(Ui(τ,D) + Ti − F (τ)(1− γ)E [min {βξi(τ,D, ϵ), Ai(τ,D, ϵ)}])

=
∑
i∈N

(ei − si)− nL(τ) + (1− F (τ))

[∑
i∈N

∑
j∈N

qij d̂j −
∑
i∈N

d̂i

]

+ F (τ)E

[∑
i∈N

∑
j∈N

qijxj −
∑
i∈N

xi −
∑
i∈N

(ϵi − ϵi)−
∑
i∈N

min {βξi, Ai}

]

=
∑
i∈N

(ei − si)− nL(τ)− F (τ)E

[∑
j∈N

min {βξj, Aj}

]
, (36)

because
∑

j∈N qij = 1.

Since the first term of (36) does not depend on τ , D, or ϵ, we can focus on the second

and third terms only. Therefore, the ex ante (expected) social welfare losses, defined by (6),

represent the relevant changes in social welfare due to changes in the settlement time τ and

the network structure D.
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